BDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formation. 2018

Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de Los Castros s/n, 39005 Santander, Spain. Electronic address: urtiaga@unican.es.

The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5-600 A m-2) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J = 50 A m-2), using NaCl, Na2SO4 and NaClO4, the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO4- was not observed. When using Na2SO4 electrolyte, increasing the applied current density to 350-600 A m-2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D001895 Boron A trace element with the atomic symbol B, atomic number 5, and atomic weight [10.806; 10.821]. Boron-10, an isotope of boron, is used as a neutron absorber in BORON NEUTRON CAPTURE THERAPY. Boron-11,Boron 11
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D004572 Electrolysis Destruction by passage of a galvanic electric current, as in disintegration of a chemical compound in solution. Electrolyses
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D005466 Fluorocarbons Liquid perfluorinated carbon compounds which may or may not contain a hetero atom such as nitrogen, oxygen or sulfur, but do not contain another halogen or hydrogen atom. This concept includes fluorocarbon emulsions, and fluorocarbon blood substitutes. Perfluorinated and related polyfluorinated chemicals are referred to as PFAS and are defined as chemicals with at least two adjacent carbon atoms, where one carbon is fully fluorinated and the other is at least partially fluorinated. Fluorocarbon,Fluorocarbon Emulsion,Fluorocarbon Emulsions,Fluorotelomer Phosphate Esters,N-Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per- and Polyfluoroalkyl Substances,PFC Perfluorinated Chemicals,PFECAs Perfluoropolyether Carboxylic Acids,Per- and Polyfluoroalkyl Substances,Perfluoroalkane Sulfonamides,Perfluoroalkyl Carboxylates,Perfluoroalkyl Ether Carboxylates,Perfluoroalkyl Polyether Carboxylates,Perfluorocarbon,Perfluorocarbons,Perfluoropolyether Carboxylic Acids,Polyfluorocarbons,Fluorinated Telomer Alcohols,Fluoro-Telomer Alcohols,Polyfluorinated Telomer Alcohols,Telomer Fluorocarbons,Acids, Perfluoropolyether Carboxylic,Alcohols, Fluorinated Telomer,Alcohols, Fluoro-Telomer,Alcohols, Polyfluorinated Telomer,Carboxylates, Perfluoroalkyl,Carboxylates, Perfluoroalkyl Ether,Carboxylates, Perfluoroalkyl Polyether,Carboxylic Acids, Perfluoropolyether,Chemicals, PFC Perfluorinated,Emulsion, Fluorocarbon,Emulsions, Fluorocarbon,Esters, Fluorotelomer Phosphate,Ether Carboxylates, Perfluoroalkyl,Fluoro Telomer Alcohols,Fluorocarbons, Telomer,N Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per and Polyfluoroalkyl Substances,Per and Polyfluoroalkyl Substances,Perfluorinated Chemicals, PFC,Phosphate Esters, Fluorotelomer,Polyether Carboxylates, Perfluoroalkyl,Sulfonamides, Perfluoroalkane,Telomer Alcohols, Fluorinated,Telomer Alcohols, Polyfluorinated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006845 Hydrocarbons, Fluorinated Inert liquid or gaseous halocarbon compounds in which FLUORINE replaces some or all HYDROGEN atoms. Fluorinated Hydrocarbons

Related Publications

Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
July 2016, Chemosphere,
Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
March 2021, The Science of the total environment,
Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
April 2020, Environmental science & technology,
Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
April 2020, Environmental pollution (Barking, Essex : 1987),
Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
March 2023, Toxicological sciences : an official journal of the Society of Toxicology,
Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
May 2018, Environmental science & technology letters,
Ane Urtiaga, and Alvaro Soriano, and Jordi Carrillo-Abad
February 2011, Chemosphere,
Copied contents to your clipboard!