Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells. 2018

Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
a Department of hematology , Daqing oil-field general hospital , Daqing City , China.

OBJECTIVE This study aimed to investigate synergistic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) and heat-shock protein 90 (HSP90) inhibitor (geldanamycin derivative 17 -allylamino- 17-demethoxy -geldanamycin, 17-AAG) on the proliferation and apoptosis of multiple myeloma (MM) cells. METHODS MTT assays evaluated inhibitory effects of rmhTRAIL and 17-AAG in different concentrations and treatment durations on the proliferation of RPMI8226 and U266 cells. The half maximal inhibitory concentration was calculated using OriginPro7.5. Synergistic effects of rmhTRAIL and 17-AAG on apoptosis of MM cells were detected using flow cytometry at 24 and 48 h post-treatment. To evaluate synergistic effects of rmhTRAIL and 17-AAG, the Q-value was calculated using King's formula. RESULTS rmhTRAIL exhibited significant inhibitory effects on the proliferation of RPMI8226 cells in a dose- and time-dependent manner (>50%), whereas U266 cells were not sensitive to rmhTRAIL (<50%). 17-AAG inhibited the proliferation of RPMI8226 and U266 cells in a dose-dependent manner (>80%). Significant synergistic effects of rmhTRAIL and 17-AAG on the proliferation of RPMI8226 cells were revealed (Q-value > 1.15), whereas synergistic effects were not evident on the proliferation of U266 cells (Q-value < 1.15). rmhTRAIL and 17-AAG exhibited significant synergistic effects on apoptosis of RPMI8226 and U266 cells (Q-value > 1.15). CONCLUSIONS The combined application of rmhTRAIL and 17-AAG revealed favorable synergistic effects in the treatment of MM.

UI MeSH Term Description Entries
D009101 Multiple Myeloma A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY. Myeloma, Plasma-Cell,Kahler Disease,Myeloma, Multiple,Myeloma-Multiple,Myelomatosis,Plasma Cell Myeloma,Cell Myeloma, Plasma,Cell Myelomas, Plasma,Disease, Kahler,Multiple Myelomas,Myeloma Multiple,Myeloma, Plasma Cell,Myeloma-Multiples,Myelomas, Multiple,Myelomas, Plasma Cell,Myelomas, Plasma-Cell,Myelomatoses,Plasma Cell Myelomas,Plasma-Cell Myeloma,Plasma-Cell Myelomas
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016227 Benzoquinones Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. 1,2-Benzoquinones,1,4-Benzoquinones,Benzodiones,2,5-Cyclohexadiene-1,4-Diones,o-Benzoquinones,p-Benzoquinones
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D047029 Lactams, Macrocyclic LACTAM-forming compounds with a ring size of approximately 1-3 dozen atoms. Ansamycins,Macrocyclic Lactams
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
April 2015, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
July 2006, Zhonghua yi xue za zhi,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
October 2006, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
August 2017, Molecular medicine reports,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
June 2018, Zhongguo shi yan xue ye xue za zhi,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
April 2023, Zhongguo shi yan xue ye xue za zhi,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
August 2016, Molecular medicine reports,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
June 2010, Acta pharmacologica Sinica,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
October 2014, Zhongguo shi yan xue ye xue za zhi,
Jing Wang, and Yun Li, and Wei Sun, and Jing Liu, and Wenming Chen
February 2016, Experimental hematology,
Copied contents to your clipboard!