Deletion analysis of the DNA sequence required for the in vitro initiation of replication of bacteriophage lambda. 1987

S Wickner, and K McKenney
Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892.

Supercoiled DNA containing the replication origin of bacteriophage lambda can be replicated in vitro. This reaction requires purified lambda O and P replication proteins and a partially purified mixture of Escherichia coli proteins (Tsurimoto, T., and Matsubara, K. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7639-7643; Wold, M. S., Mallory, J.B., Roberts, J. D., LeBowitz, J. H., and McMacken, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6176-6180). The lambda origin region has four repeats of a 19-base pair sequence to which O protein binds. To the right of these sites on the lambda map is a 40-base pair region that is rich in adenine and thymine, followed by a 28-base pair palindromic sequence. To define more precisely the boundaries of the lambda origin, we cloned a 358-base pair piece of lambda DNA containing the origin region into M13mp8 in both orientations. In vitro replication of RF I DNAs prepared from cells infected with these two M13 ori lambda phage was dependent on lambda O and P proteins and a crude protein fraction from uninfected E. coli; with these conditions there was no replication of M13mp8 RF I DNA. We made deletions from the left and the right ends of the lambda origin DNA and determined the deletion end points by DNA sequencing. We have tested RF I DNAs prepared from cells infected with phage carrying ori lambda deletions for their ability to function as templates for O- and P-dependent replication in vitro. Our results show that lambda DNA between nucleotide positions 39072 and 39160 is required for efficient O- and P-dependent replication. This 89-base pair piece of DNA includes only two of the four 19-base pair O protein-binding sites (the two right-most) and the adjoining adenine- and thymine-rich region to the right of the O-binding sites.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

S Wickner, and K McKenney
October 1982, Proceedings of the National Academy of Sciences of the United States of America,
S Wickner, and K McKenney
December 1977, Virology,
S Wickner, and K McKenney
September 1972, Nature: New biology,
S Wickner, and K McKenney
January 1977, Current topics in microbiology and immunology,
S Wickner, and K McKenney
June 1977, Journal of molecular biology,
S Wickner, and K McKenney
January 1983, Cold Spring Harbor symposia on quantitative biology,
S Wickner, and K McKenney
October 1988, Nucleic acids research,
Copied contents to your clipboard!