The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate cross-bridge action in muscle. 1987

B Brenner, and E Eisenberg
Institute of Physiology II, University of Tübingen, F.R.G.

Muscle contraction occurs when the thin actin and thick myosin filaments slide past each other. It is generally assumed that this process is driven by cross-bridges which extend from the myosin filaments and cyclically interact with the actin filaments as ATP is hydrolysed. Current biochemical studies suggest that the myosin cross-bridge exists in two main conformations. In one conformation, which occurs in the absence of MgATP, the cross-bridge binds very tightly to actin and detaches very slowly. When all the cross-bridges are bound in this way, the muscle is in rigor and extremely resistant to stretch. The second conformation is induced by the binding of MgATP. In this conformation the cross-bridge binds weakly to actin and attaches and detaches so rapidly that it can slip from actin site to actin site, offering very little resistance to stretch. During ATP hydrolysis by isolated actin and myosin in solution, the cross-bridge cycles back and forth between the weak-binding and strong-binding conformations. Assuming a close correlation between the behaviour of isolated proteins in solution and the cross-bridge action in muscle, Eisenberg and Greene have developed a model for cross-bridge action where, in the fixed filament lattice in muscle, the transition from the weak-binding to the strong-binding conformation causes the elastic cross-bridge to become deformed and exert a positive force, while the transition back to the weak-binding conformation upon binding of MgATP, causes deformation which, during fibre shortening, leads to rapid detachment of the cross-bridge and its re-attachment to a new actin site. From the results of in vitro experiments, it was furthermore suggested that relaxation occurs when the transition from the weak-binding to the strong-binding conformation is blocked. Results of recent mechanical and X-ray diffraction experiments on skinned fibre preparations are consistent with the assumed close correlation between the behaviour of isolated proteins in solution and the behaviour of cross-bridges in muscle. Furthermore, X-ray diffraction experiments allowed to provide experimental evidence for the postulated structural difference between attached weak-binding and attached strong-binding cross-bridges. Finally, recent studies have confirmed the prediction of Eisenberg and Greene that the rate limiting step in vitro determines the rate of force generation in muscle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Brenner, and E Eisenberg
January 1984, Advances in experimental medicine and biology,
B Brenner, and E Eisenberg
June 1976, Nature,
B Brenner, and E Eisenberg
January 1975, Ciba Foundation symposium,
B Brenner, and E Eisenberg
January 1978, Progress in biophysics and molecular biology,
B Brenner, and E Eisenberg
January 1999, Annual review of biochemistry,
B Brenner, and E Eisenberg
July 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
B Brenner, and E Eisenberg
February 1980, Biophysical journal,
B Brenner, and E Eisenberg
April 1983, Biochimica et biophysica acta,
Copied contents to your clipboard!