Chronic restraint stress induces excessive activation of primordial follicles in mice ovaries. 2018

Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China.

Chronic stress is an important factor influencing people's health. It usually causes endocrinal disorders and a decline in reproduction in females. Although studies of both human and animals suggest a detrimental effect of stress on reproduction, the influence of chronic stress on the ovarian reservation and follicular development is still not clear. In this study, a chronic restraint stress (CRS) mouse model was used to investigate the effect of stress on ovarian reservation and follicular development and explore the underlying mechanism. In this study, after 8 weeks of CRS, primordial follicles were excessively activated in the ovaries of the CRS group compared with the control group. Further results showed that the activation of primordial follicles induced by CRS was involved in the increasing expression level of Kit ligand and its receptor Kit and the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/protein kinase B (Akt) pathway. The corticotropin-releasing hormone (CRH) is a neuropeptide released due to stress, which plays an important role in regulating follicle development. A high level of serum CRH was detected in the CRS mouse model, and the real-time polymerase chain reaction assay showed that the mRNA level of its main receptor CRHR1increased in the ovaries of the CRS mouse group. Moreover, 100nM CRH significantly improved the activation of primordial follicles in newborn mouse ovaries in vitro. These results demonstrated that CRS could induce immoderate activation of primordial follicles accompanied by the activation of Kit-PI3K signaling, in which CRH might be an important endocrine factor.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
April 2018, Reproductive sciences (Thousand Oaks, Calif.),
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
March 2011, Reproductive medicine and biology,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
June 2023, Molecular reproduction and development,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
January 2002, Ernst Schering Research Foundation workshop,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
December 2022, Reproductive sciences (Thousand Oaks, Calif.),
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
October 2014, Neuroreport,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
January 1970, Akusherstvo i ginekologiia,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
March 2023, PNAS nexus,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
November 2019, The Journal of clinical endocrinology and metabolism,
Minhua Xu, and Junyan Sun, and Qian Wang, and Qiuwan Zhang, and Chunsheng Wei, and Dongmei Lai
January 1999, Journal of reproduction and fertility. Supplement,
Copied contents to your clipboard!