Macular corneal dystrophy: A review. 2018

Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, USA. Electronic address: shrutiaggarwal428@gmail.com.

Macular corneal dystrophy is a corneal stromal dystrophy which leads to progressive vision loss. Macular corneal dystrophy is an autosomal recessive condition in which there is abnormality of proteoglycan synthesis. Mutations in the carbohydrate sulfotransferase gene prevent normal sulfation of corneal keratan. Different immunophenotypes have been described depending on the presence of keratan sulfate in cornea and/or serum. The deposition of abnormal proteoglycans leads to loss of corneal transparency and decreased vision. Imaging techniques such as in vivo confocal microscopy and anterior segment ocular coherence tomography have helped enhance our understanding of the corneal ultrastructural changes in this condition. These imaging modalities provide additional information without the need for a tissue biopsy or excision. Traditionally, full-thickness penetrating keratoplasty to replace the opacified cornea has remained the standard of treatment to improve vision. However, newer surgical interventions such as deep anterior lamellar keratoplasty and phototherapeutic keratectomy have also been shown to play a role in the treatment. Disease recurrence remains a challenge and the reason for poor visual prognosis. Newer techniques such as gene-targeting therapies and enzyme replacement therapies are being studied for a potential permanent solution in macular corneal dystrophy. Recent research is directed toward development of genetically modified products to integrate into host corneal DNA and block the mutant genes and hence overcome the underlying pathophysiology. Enzyme replacement therapy is another intervention with potential to treat macular corneal dystrophy. Animal studies show clearance of accumulated keratan sulfate from the body tissues in the treatment of systemic mucopolysaccharidosis by long-term enzyme replacement therapy. Future research should be directed toward elucidation of the relationship between the mutated carbohydrate sulfotransferase gene, the mechanism of deposit formation, and the development of pharmaceutical agents based on gene therapy.

UI MeSH Term Description Entries
D007632 Keratan Sulfate A sulfated mucopolysaccharide initially isolated from bovine cornea. At least two types are known. Type I, found mostly in the cornea, contains D-galactose and D-glucosamine-6-O-sulfate as the repeating unit; type II, found in skeletal tissues, contains D-galactose and D-galactosamine-6-O-sulfate as the repeating unit. Keratosulfate,Sulfate, Keratan
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D003317 Corneal Dystrophies, Hereditary Bilateral hereditary disorders of the cornea, usually autosomal dominant, which may be present at birth but more frequently develop during adolescence and progress slowly throughout life. Central macular dystrophy is transmitted as an autosomal recessive defect. Corneal Dystrophies,Granular Dystrophy, Corneal,Groenouw's Dystrophies,Macular Dystrophy, Corneal,Stromal Dystrophies, Corneal,Corneal Dystrophy,Corneal Dystrophy, Hereditary,Corneal Granular Dystrophies,Corneal Granular Dystrophy,Corneal Macular Dystrophies,Corneal Macular Dystrophy,Corneal Stromal Dystrophies,Corneal Stromal Dystrophy,Dystrophy, Corneal,Dystrophy, Corneal Granular,Dystrophy, Corneal Macular,Dystrophy, Corneal Stromal,Dystrophy, Hereditary Corneal,Groenouw Dystrophies,Groenouws Dystrophies,Hereditary Corneal Dystrophies,Hereditary Corneal Dystrophy,Stromal Dystrophy, Corneal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D016039 Corneal Transplantation Partial or total replacement of the CORNEA from one human or animal to another. Grafting, Corneal,Keratoplasty,Keratoplasty, Lamellar,Transplantation, Corneal,Cornea Transplantation,Transplantation, Cornea,Cornea Transplantations,Corneal Grafting,Corneal Graftings,Corneal Transplantations,Graftings, Corneal,Keratoplasties,Keratoplasties, Lamellar,Lamellar Keratoplasties,Lamellar Keratoplasty,Transplantations, Cornea,Transplantations, Corneal
D058990 Molecular Targeted Therapy Treatments with drugs which interact with or block synthesis of specific cellular components characteristic of the individual's disease in order to stop or interrupt the specific biochemical dysfunction involved in progression of the disease. Targeted Molecular Therapy,Molecular Targeted Therapies,Molecular Therapy, Targeted,Targeted Molecular Therapies,Targeted Therapy, Molecular,Therapy, Molecular Targeted,Therapy, Targeted Molecular
D061848 Optical Imaging The use of light interaction (scattering, absorption, and fluorescence) with biological tissue to obtain morphologically based information. It includes measuring inherent tissue optical properties such as scattering, absorption, and autofluorescence; or optical properties of exogenous targeted fluorescent molecular probes such as those used in optical MOLECULAR IMAGING, or nontargeted optical CONTRAST AGENTS. Fundus Autofluorescence Imaging,Autofluorescence Imaging,Fluorescence Imaging,Autofluorescence Imaging, Fundus,Fundus Autofluorescence Imagings,Imaging, Autofluorescence,Imaging, Fluorescence,Imaging, Fundus Autofluorescence,Imaging, Optical

Related Publications

Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
June 2021, Current eye research,
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
October 1973, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie,
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
January 1986, American journal of ophthalmology,
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
October 2014, Eye (London, England),
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
December 2016, Cornea,
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
October 1969, Investigative ophthalmology,
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
January 1989, Eye (London, England),
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
January 1977, Duodecim; laaketieteellinen aikakauskirja,
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
November 1988, Archives of ophthalmology (Chicago, Ill. : 1960),
Shruti Aggarwal, and Travis Peck, and Jeffrey Golen, and Zeynel A Karcioglu
April 1985, Ophthalmic paediatrics and genetics,
Copied contents to your clipboard!