Plasma atriopeptin concentrations in hyperthyroidism, euthyroidism, and hypothyroidism: studies in man and rat. 1987

P W Ladenson, and H Langevin, and M Michener
Division of Endocrinology and Metabolism, Sinai Hospital of Baltimore, Maryland 21215.

Atriopeptin (AP) is a polypeptide produced by atrial myocytes that is capable of inducing diuresis, natriuresis, and vasodilatation. Because thyroid dysfunction is known to be associated with alterations in both renal function and vasomotor control, we investigate the possible effects of varying thyroid function on AP in humans and rats. Plasma AP concentrations were determined in hyperthyroid and hypothyroid patients and normal subjects. Plasma AP was also measured in some patients after the iv infusion of 1 L 150 mmol/L NaCl and after treatment of hyperthyroidism or hypothyroidism. Plasma and atrial AP concentrations were measured in hyperthyroid, euthyroid, and hypothyroid rats. Plasma AP concentrations did not differ in the hyperthyroid (n = 22), euthyroid (n = 45), and hypothyroid (n = 16) subjects [47.1 +/- 18.2 (mean +/- SD), 45.1 +/- 28.9, and 42.4 +/- 20.0 pg/mL, respectively]. After NaCl infusion, mean plasma AP concentrations did not increase significantly in any of the three groups. Treatment of hyperthyroidism and hypothyroidism did not result in a significant change in plasma AP levels. In contrast, plasma AP concentrations were significantly higher in T4-treated (hyperthyroid) rats than in either euthyroid or propylthiouracil-treated (hypothyroid) rats [621 +/- 17 vs. 266 +/- 41 (P less than 0.01) and 210 +/- 28 pg/mL (P less than 0.001), respectively], whereas atrial AP contents were similar in the three groups of rats. We conclude that hyperthyroidism and hypothyroidism in man are not associated with significantly altered plasma AP concentrations. The higher plasma AP levels in T4-treated rats may reflect the relatively shorter duration or greater severity of thyroid dysfunction or thyroid hormone-induced myocardial hypertrophy in the animals.

UI MeSH Term Description Entries
D006980 Hyperthyroidism Hypersecretion of THYROID HORMONES from the THYROID GLAND. Elevated levels of thyroid hormones increase BASAL METABOLIC RATE. Hyperthyroid,Primary Hyperthyroidism,Hyperthyroidism, Primary,Hyperthyroids
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P W Ladenson, and H Langevin, and M Michener
May 1951, Deutsche medizinische Wochenschrift (1946),
P W Ladenson, and H Langevin, and M Michener
September 1976, Metabolism: clinical and experimental,
P W Ladenson, and H Langevin, and M Michener
February 1981, Journal of lipid research,
P W Ladenson, and H Langevin, and M Michener
March 1973, The Journal of clinical endocrinology and metabolism,
P W Ladenson, and H Langevin, and M Michener
September 1986, Presse medicale (Paris, France : 1983),
P W Ladenson, and H Langevin, and M Michener
March 2016, European thyroid journal,
P W Ladenson, and H Langevin, and M Michener
February 1981, Journal of lipid research,
P W Ladenson, and H Langevin, and M Michener
June 1980, Computer programs in biomedicine,
P W Ladenson, and H Langevin, and M Michener
May 2009, Journal of endocrinological investigation,
Copied contents to your clipboard!