JMJD6 exerts function in neuropathic pain by regulating NF‑κB following peripheral nerve injury in rats. 2018

Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China.

Treatment of neuropathic pain (NPP) continues to be a major challenge, and the underlying mechanisms remain to be elucidated. Previous studies have demonstrated that histone methylation is important in synaptic plasticity of the nervous system and may affect nuclear factor‑κB (NF‑κB) signaling through epigenetic mechanisms. The present study aimed to investigate the role of Jumonji C domain 6 (JMJD6), a histone demethylase, in a chronic constriction injury (CCI) model of NPP. On the third day post‑CCI surgery, a JMJD6 overexpressing lentiviral vector (LV‑JMJD6) was intrathecally injected in the rats. Mechanical withdrawal threshold and thermal withdrawal latency were assessed prior surgery and on days 3, 7, 10 and 14 post‑CCI. The results showed that intrathecal injection with the LV‑JMJD6 attenuated CCI‑induced pain facilitation. The expression of JMJD6 was lower following CCI surgery, and its expression was significantly increased following intrathecal injection with LV‑JMJD6, compared with levels in normal saline (NS)‑ and negative control lentiviral vector (NC)‑treated rats. The expression of spinal NF‑κB phosphorylated (p‑)p65 subunit and its downstream pain‑associated effectors, including interleukin 1β (IL‑1β), tumor necrosis factor‑α (TNF‑α) and vascular endothelial growth factor (VEGF), were increased following CCI surgery. Intrathecal injection with LV‑JMJD6 suppressed activation of the p‑p65 subunit in CCI rats. In addition, expression levels of its downstream effectors IL‑1β, TNF‑α and VEGF were attenuated by intrathecal treatment with LV‑JMJD6, compared with those in the NS‑ and NC‑treated CCI rats. Furthermore, the JMJD6‑ and p65‑immunoreactive cells overlapped in the spinal dorsal horn, however, co‑immunoprecipitation showed that JMJD6 and the NF‑κB p65 subunit did not directly interact, indicating other functional connections may exist between these factors following CCI surgery. Collectively, these findings indicated an important mechanism underlying the pathogenesis of NPP. JMJD6 may exert its therapeutic function in NPP by regulating NF‑κB following CCI.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009437 Neuralgia Intense or aching pain that occurs along the course or distribution of a peripheral or cranial nerve. Nerve Pain,Neurodynia,Paroxysmal Nerve Pain,Neuralgia, Atypical,Neuralgia, Iliohypogastric Nerve,Neuralgia, Ilioinguinal,Neuralgia, Perineal,Neuralgia, Stump,Neuralgia, Supraorbital,Neuralgia, Vidian,Neuropathic Pain,Atypical Neuralgia,Atypical Neuralgias,Iliohypogastric Nerve Neuralgia,Iliohypogastric Nerve Neuralgias,Ilioinguinal Neuralgia,Ilioinguinal Neuralgias,Nerve Neuralgia, Iliohypogastric,Nerve Neuralgias, Iliohypogastric,Nerve Pain, Paroxysmal,Nerve Pains,Nerve Pains, Paroxysmal,Neuralgias,Neuralgias, Atypical,Neuralgias, Iliohypogastric Nerve,Neuralgias, Ilioinguinal,Neuralgias, Perineal,Neuralgias, Stump,Neuralgias, Supraorbital,Neuralgias, Vidian,Neurodynias,Neuropathic Pains,Pain, Nerve,Pain, Neuropathic,Pain, Paroxysmal Nerve,Pains, Nerve,Pains, Neuropathic,Pains, Paroxysmal Nerve,Paroxysmal Nerve Pains,Perineal Neuralgia,Perineal Neuralgias,Stump Neuralgia,Stump Neuralgias,Supraorbital Neuralgia,Supraorbital Neuralgias,Vidian Neuralgia,Vidian Neuralgias
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D003251 Constriction, Pathologic The condition of an anatomical structure's being constricted beyond normal dimensions. Stenosis,Stricture,Constriction, Pathological,Pathologic Constriction,Constrictions, Pathologic,Pathologic Constrictions,Pathological Constriction,Stenoses,Strictures
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
November 2018, Scientific reports,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
May 2012, European journal of pharmacology,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
September 2020, Experimental and therapeutic medicine,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
December 2018, International journal of molecular medicine,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
January 2004, Neuroscience,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
May 2016, Neurochemical research,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
December 2023, Pharmaceutical biology,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
December 2007, The European journal of neuroscience,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
February 2022, Chemico-biological interactions,
Cen Wen, and Mengyuan Xu, and Cheng Mo, and Zhigang Cheng, and Qulian Guo, and Xiaoyan Zhu
January 2024, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Copied contents to your clipboard!