Crocin inhibits RANKL‑induced osteoclastogenesis by regulating JNK and NF‑κB signaling pathways. 2018

Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China.

Receptor activator of nuclear factor‑κB ligand (RANKL), a member of the tumor necrosis factor receptor-ligand family, is a crucial factor involved in osteoclast differentiation. Crocin, a pharmacologically active component of Crocus sativus L., has been reported to attenuate ovariectomy‑induced osteoporosis in rats. However, the molecular mechanism underlying the effect of crocin on osteoclast formation remains to be determined. The present study aimed to investigate the effect of crocin on RANKL‑induced osteoclastogenesis and its underlying molecular mechanism. Results demonstrated that crocin decreased osteoclastogenesis in bone marrow‑derived macrophages (BMMs). In addition, the expression levels of osteoclast marker proteins were downregulated by crocin. Mechanistically, crocin inhibited RANKL‑induced activation of nuclear factor‑κB (NF‑κB) by suppressing inhibitor of κBα degradation and preventing NF‑κB p65 subunit nuclear translocation, and by activating c‑Jun N‑terminal kinase (JNK) in BMMs. In summary, the results of the present study suggested that crocin downregulates osteoclast differentiation via inhibition of JNK and NF‑κB signaling pathways. Thus, crocin may be a potential therapeutic agent for the treatment of osteoclast‑associated diseases, including osteoporosis.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002338 Carotenoids The general name for a group of fat-soluble pigments found in green, yellow, and leafy vegetables, and yellow fruits. They are aliphatic hydrocarbons containing 4 terpene subunits. Carotenes,Carotenoid,Tetraterpene Derivatives,Tetraterpenes,Carotene,Derivatives, Tetraterpene
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB

Related Publications

Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
April 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
May 2019, Journal of cellular biochemistry,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
September 2018, Journal of cellular biochemistry,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
September 2016, Biochemical and biophysical research communications,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
January 2020, Frontiers in pharmacology,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
March 2014, Biochemical and biophysical research communications,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
March 2015, International immunopharmacology,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
January 2022, Frontiers in pharmacology,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
January 2019, Biochemical and biophysical research communications,
Liping Shi, and Suping Zhao, and Qian Chen, and Youwei Wu, and Jian Zhang, and Na Li
February 2019, Biochemical and biophysical research communications,
Copied contents to your clipboard!