Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations. 2018

Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
State Key Laboratory of Explosion Science and Technology , Beijing Institute of Technology , Beijing 100081 , China.

Hexanitrohexaazaisowurtzitane (CL-20) has a high detonation velocity and pressure, but its sensitivity is also high, which somewhat limits its applications. Therefore, it is important to understand the mechanism and characteristics of thermal decomposition of CL-20. In this study, a ε-CL-20 supercell was constructed and ReaxFF-lg reactive molecular dynamics simulations were performed to investigate thermal decomposition of ε-CL-20 at various temperatures (2000, 2500, 2750, 3000, 3250, and 3500 K). The mechanism of thermal decomposition of CL-20 was analyzed from the aspects of potential energy evolution, the primary reactions, and the intermediate and final product species. The effect of temperature on thermal decomposition of CL-20 is also discussed. The initial reaction path of thermal decomposition of CL-20 is N-NO2 cleavage to form NO2, followed by C-N cleavage, leading to the destruction of the cage structure. A small number of clusters appear in the early reactions and disappear at the end of the reactions. The initial reaction path of CL-20 decomposition is the same at different temperatures. However, as the temperature increases, the decomposition rate of CL-20 increases and the cage structure is destroyed earlier. The temperature greatly affects the rate constants of H2O and N2, but it has little effect on the rate constants of CO2 and H2.

UI MeSH Term Description Entries

Related Publications

Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
January 2023, International journal of molecular sciences,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
July 2010, Physical chemistry chemical physics : PCCP,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
February 2020, Physical chemistry chemical physics : PCCP,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
September 2022, Journal of molecular modeling,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
November 2022, Journal of molecular modeling,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
October 2018, Chemphyschem : a European journal of chemical physics and physical chemistry,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
May 2011, The journal of physical chemistry. B,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
October 2012, The journal of physical chemistry. A,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
January 2011, The journal of physical chemistry. B,
Fuping Wang, and Lang Chen, and Deshen Geng, and Junying Wu, and Jianying Lu, and Chen Wang
June 2021, Journal of molecular modeling,
Copied contents to your clipboard!