Electrocorticographic development of epileptogenic foci in the occipital region of the rat cerebral cortex. 1987

P Mares, and J Mares, and H Machová
Institute of Physiology, Czechoslovak Academy of Sciences, Prague.

The development of cortical penicillin foci in the occipital region was studied in rats whose ages ranged from five days up to the adult age. The local application of penicillin induced the formation of an epileptogenic focus for the first time at the age of seven days. With advancing age, the amplitude of focal discharges increased, the duration of the individual components of the discharge shortened, its originally negative-positive configuration changed to a triphasic form and in the third week of life initial positivity, for a time, become the dominant component of the discharge. Projection of the discharges to the contralateral hemisphere was found to be inconstant in the second postnatal week, but appeared regularly from the age of 14 days. Synchronization of the discharges of two symmetrical foci was very poor in 7-day-old young, but improved noticeably by the 14th day; it was never complete, however, even in adulthood. The activity of symmetrical foci changed spontaneously to ECoG seizures, which were most common in 7-day-old young (in which ictal activity was usually not generalized, however) and were least frequent in 14-day-old animals. Focal discharges could not be reliably triggered by electrical stimulation of the contralateral cortex until the age of 18 days and later. The occipital part of the cortex develops somewhat later than the sensorimotor, frontal region, and during its development there also appeared phenomena which are not present in the frontal cortex.

UI MeSH Term Description Entries
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P Mares, and J Mares, and H Machová
January 1952, Rivista di neurologia,
P Mares, and J Mares, and H Machová
July 1967, Electroencephalography and clinical neurophysiology,
P Mares, and J Mares, and H Machová
October 1972, Brain research,
P Mares, and J Mares, and H Machová
January 1971, Transactions of the American Neurological Association,
P Mares, and J Mares, and H Machová
December 1990, Anesthesia and analgesia,
P Mares, and J Mares, and H Machová
January 1972, Acta neuropathologica,
P Mares, and J Mares, and H Machová
January 1971, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952),
P Mares, and J Mares, and H Machová
July 1972, Epilepsia,
P Mares, and J Mares, and H Machová
July 1990, Brain research bulletin,
Copied contents to your clipboard!