Changes in Myosin Heavy Chain Isoforms Along the Length of Orbital Fibers in Rabbit Extraocular Muscle. 2018

Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
The Discipline of Physiology and the Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.

Extraocular muscles express 10 myosin heavy chain (MyHC) isoforms that cater for a wide range of contractile speeds. We aim to characterize the variations in MyHC expression along the length of singly (SIFs) and multiply innervated fibers (MIFs) in the orbital layer of rabbit superior rectus muscle. Monospecific antibodies to nine MyHCs, including an anti-slow-tonic antibody characterized here were used to immunohistochemically map variations in MyHC distribution in serial sections along the muscle's full length. The fastest MyHC, EO, is expressed at the endplate zone (EPZ) of SIFs, flanked proximally and distally by segments expressing the slower 2A, with or without embryonic MyHC. MIFs with constant diameter express α-cardiac MyHC at the EPZ, flanked by segments co-expressing α-cardiac/embryonic and possibly slow-tonic MyHCs. MIFs with varying diameter also express α-cardiac MyHC at the EPZ in their thin, central region, flanked by thin segments co-expressing α-cardiac/embryonic MyHCs, with long proximal and distal extensions of larger diameter that co-express embryonic/slow-tonic and α-cardiac or β/slow MyHCs. Orbital fiber types express multiple MyHCs, with faster ones in SIFs, slower ones in MIFs, but all have fast EPZs and slower end segments. We hypothesize that these unique MyHC distributions enable these fibers to relax in two kinetically distinct phases while acting in an antagonistic manner during a saccade: the fast phases facilitate acceleration of eyeball rotation during agonist contraction, while the slow phases help its deceleration toward the visual target, thereby linearizing the saccade. These properties also facilitate pulley movements to implement Listing's law.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte
D018995 Myosin Heavy Chains The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity. Myosin Heavy Chain,Heavy Chain, Myosin,Heavy Chains, Myosin
D020033 Protein Isoforms Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING. Isoform,Isoforms,Protein Isoform,Protein Splice Variant,Splice Variants, Protein,Protein Splice Variants,Isoform, Protein,Isoforms, Protein,Splice Variant, Protein,Variant, Protein Splice,Variants, Protein Splice
D023421 Models, Animal Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing. Experimental Animal Models,Laboratory Animal Models,Animal Model,Animal Model, Experimental,Animal Model, Laboratory,Animal Models,Animal Models, Experimental,Animal Models, Laboratory,Experimental Animal Model,Laboratory Animal Model,Model, Animal,Model, Experimental Animal,Model, Laboratory Animal,Models, Experimental Animal,Models, Laboratory Animal

Related Publications

Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
January 1989, Histochemistry,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
August 1995, Journal of muscle research and cell motility,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
April 2003, Investigative ophthalmology & visual science,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
January 2008, Japanese journal of ophthalmology,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
October 2000, Investigative ophthalmology & visual science,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
September 2017, Anatomical record (Hoboken, N.J. : 2007),
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
May 1997, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
March 2006, Molecular vision,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
August 1989, European journal of biochemistry,
Christine A Lucas, and Hannah S M Rhee, and Joseph F Y Hoh
December 1999, FEBS letters,
Copied contents to your clipboard!