Polymerization of G-actin by myosin subfragment 1. 1988

L Miller, and M Phillips, and E Reisler
Department of Chemistry and Biochemistry, University of California, Los Angeles 90024.

The polymerization of actin from rabbit skeletal muscle by myosin subfragment 1 (S-1) from the same source was studied in the depolymerizing G-actin buffer. The polymerization reactions were monitored in light-scattering experiments over a wide range of actin/S-1 molar rations. In contrast to the well resolved nucleation-elongation steps of actin assembly by KC1 and Mg2+, the association of actin in the presence of S-1 did not reveal any lag in the polymerization reaction. Light scattering titrations of actin with S-1 and vice versa showed saturation of the polymerization reaction at stoichiometric 1:1 ratios of actin to S-1. Ultracentrifugation experiments confirmed that only stoichiometric amounts of actin were incorporated into a 1:1 acto-S-1 polymer even at high actin/S-1 ratios. These polymers were indistinguishable from standard complexes of S-1 with F-actin as judged by electron microscopy, light scattering measurements, and fluorescence changes observed while using actin covalently labeled with N-(1-pyrenyl)iodoacetamide. F-actin obtained by polymerization of G-actin by S-1 could initiate rapid assembly of G-actin in the presence of 10 mM KC1 and 0.5 mM MgCl2 and showed normal activation of MgATPase hydrolysis by myosin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation

Related Publications

L Miller, and M Phillips, and E Reisler
December 1989, The Journal of biological chemistry,
L Miller, and M Phillips, and E Reisler
May 1991, Biochemistry,
L Miller, and M Phillips, and E Reisler
October 1992, The Journal of biological chemistry,
L Miller, and M Phillips, and E Reisler
January 2007, Bioelectrochemistry (Amsterdam, Netherlands),
L Miller, and M Phillips, and E Reisler
July 1989, Biochemistry,
L Miller, and M Phillips, and E Reisler
October 1992, Biochemistry,
L Miller, and M Phillips, and E Reisler
February 1994, The Journal of biological chemistry,
L Miller, and M Phillips, and E Reisler
November 1980, FEBS letters,
Copied contents to your clipboard!