Synthesis of triblock copolymeric micelle based on poly (ethylene glycol) and poly (vinyl acetate) through reversible addition-fragmentation chain transfer polymerization. 2018
OBJECTIVE Polymeric micelles are fabricated by the self-aggregation of amphiphilic polymers in aqueous medium. Amphiphilic block copolymers consist of hydrophobic and hydrophilic blocks. The hydrophilic blocks form corona, while hydrophobic blocks produce core of the micelle. METHODS In the present manuscript, a triblock copolymer derived from poly (ethylene glycol) and poly (vinyl acetate) (PVAc-b-PEG200-b-PVAc) has been prepared via reversible addition-fragmentation chain transfer polymerization. Its structural properties as well as micellar stability have been studied and application as dye carrier has been discussed in details. RESULTS The GPC analysis shows the low polydispersity of the developed copolymer that signifies the controlled nature of polymerization. The copolymer demonstrates long-term micellar stability, which has been determined by dynamic light scattering (DLS) analysis. The block copolymer reveals excellent pH-triggered release behavior of loaded Nile red, which ascertained the dye carrier feature of PVAc-b-PEG200-b-PVAc.
| UI | MeSH Term | Description | Entries |
|---|