Effects of cyclic adenosine monophosphate on human chorionic gonadotropin and estradiol output by cultured human placental cells. 1988

J Benoit, and M Rodway, and B H Yuen, and P C Leung
Department of Obstetrics and Gynecology, University of British Columbia, Grace Hospital, Vancouver, Canada.

We have previously shown that adenosine-3',5'-cyclic monophosphate (cAMP) inhibits basal estradiol output in human trophoblast cells. The objective of this study was to investigate further the effect of 8-bromo-cAMP on the conversion of C19 androgens to estradiol by placental cells. Trophoblast cells were prepared from human term placenta and maintained in monolayer culture. On days 3 and 4 of culture, these cells were treated with dehydroepiandrosterone sulfate, androstenedione, or testosterone with or without the concomitant presence of 8-Br-cAMP. 8-Br-cAMP markedly enhanced human chorionic gonadotropin secretion into the culture medium. On the other hand, the concomitant addition of 8-Br-cAMP with the androgen precursors led to an inhibition of estradiol output. The concentrations of androstenedione and dehydroepiandrosterone in the culture medium after treatment with dehydroepiandrosterone sulfate were elevated by the concomitant presence of 8-Br-cAMP. From these results we conclude that 8-Br-cAMP enhances human chorionic gonadotropin output in human term placental cells, whereas the presence of 8-Br-cAMP in cells given androgen precursors inhibits estradiol output, probably at the level of aromatization.

UI MeSH Term Description Entries
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000735 Androstenedione A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL. 4-Androstene-3,17-dione,delta-4-Androstenedione,4 Androstene 3,17 dione,delta 4 Androstenedione
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

J Benoit, and M Rodway, and B H Yuen, and P C Leung
June 1973, The Journal of clinical endocrinology and metabolism,
J Benoit, and M Rodway, and B H Yuen, and P C Leung
July 1986, Journal of animal science,
J Benoit, and M Rodway, and B H Yuen, and P C Leung
February 1974, The Journal of clinical endocrinology and metabolism,
J Benoit, and M Rodway, and B H Yuen, and P C Leung
September 1981, Endocrinology,
J Benoit, and M Rodway, and B H Yuen, and P C Leung
November 1974, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!