Desulfation of 3,5,3'-triiodothyronine sulfate by microsomes from human and rat tissues. 1988

M P Kung, and S W Spaulding, and J A Roth
Department of Pharmacology and Therapeutics, Buffalo Veterans Administration Medical Center, New York 14215.

Subcellular preparations from rat liver, brain, and kidney and from human liver were tested for their ability to desulfate T3 sulfate (T3SO4). Activity was found associated with the microsomal fraction: rat liver was the most active, hydrolyzing 76 pmol/min.mg protein of T3SO4 while preparations from rat kidney and brain were about 1/5 and 1/20 as active. Microsomal preparations from human liver obtained at autopsy were as active as fresh rat preparations. Thyroxine sulfate was not an active substrate. Microsomes prepared with dithiothreitol and EDTA in order to detect deiodinating activity maintained T3SO4-desulfating activity. Cytosolic preparations containing arylsulfatase activities failed to desulfate T3SO4. Estrone sulfate, dehydroepiandrosterone sulfate, and nitrophenyl sulfate are known substrates for microsome-associated arylsulfatase activities, and these compounds were found to inhibit hydrolysis of T3SO4 to various extents. Of these competing sulfatase substrates, only dehydroepiandrosterone sulfate inhibits T3SO4 desulfation completely. In order to determine whether desulfation occurs in intact cells, isolated hepatocytes were incubated in the presence of 7 and 54 microM T3SO4. These cells were found to hydrolyze 1-1.5% of the sulfate ester/h for up to 3 h. The demonstration of this activity raises the possibility that these hepatic cells may be able to reactivate T3SO4, which has generally been regarded as an irreversibly inactivated metabolite.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009578 Nitrobenzenes BENZENE derivatives carrying nitro group substituents.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer

Related Publications

M P Kung, and S W Spaulding, and J A Roth
April 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M P Kung, and S W Spaulding, and J A Roth
November 1983, The Journal of clinical investigation,
M P Kung, and S W Spaulding, and J A Roth
July 1993, Endocrinology,
M P Kung, and S W Spaulding, and J A Roth
October 1991, The Journal of clinical endocrinology and metabolism,
M P Kung, and S W Spaulding, and J A Roth
June 1997, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology,
M P Kung, and S W Spaulding, and J A Roth
April 1980, The Journal of clinical investigation,
M P Kung, and S W Spaulding, and J A Roth
May 1965, Journal of biochemistry,
Copied contents to your clipboard!