Nucleotide sequence of the tail sheath gene of bacteriophage T4 and amino acid sequence of its product. 1988

F Arisaka, and T Nakako, and H Takahashi, and S Ishii
Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.

The nucleotide sequence of gene 18 of bacteriophage T4 was determined by the Maxam-Gilbert method, partially aided by the dideoxy method. To confirm the deduced amino acid sequence of the tail sheath protein (gp18) that is encoded by gene 18, gp18 was extensively digested by trypsin or lysyl endopeptidase and subjected to reverse-phase high-performance liquid chromatography. Approximately 40 peptides, which cover 88% of the primary structure, were fractionated, the amino acid compositions were determined, and the corresponding sequences in DNA were identified. Furthermore, the amino acid sequences of 10 of the 40 peptides were determined by a gas phase protein sequencer, including N- and C-terminal sequences. Thus, the complete amino acid sequence of gp18, which consists of 658 amino acids with a molecular weight of 71,160, was determined.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

F Arisaka, and T Nakako, and H Takahashi, and S Ishii
December 1984, Journal of molecular biology,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
March 1988, Nucleic acids research,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
November 1988, Nucleic acids research,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
February 1982, Nucleic acids research,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
March 1988, Journal of virology,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
February 1969, Journal of molecular biology,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
June 1971, Journal of molecular biology,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
January 1988, Journal of molecular biology,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
December 1985, Virology,
F Arisaka, and T Nakako, and H Takahashi, and S Ishii
November 1989, Nucleic acids research,
Copied contents to your clipboard!