Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange. 1988

J Lund, and M R Webb, and D C White
Department of Biology, University of York, United Kingdom.

Extensive phosphate-water oxygen exchange occurs when ATP is hydrolyzed in an [18O]water medium by length oscillated and Ca2+-activated, chemically skinned fibers from the flight muscle of the giant waterbug Lethocerus indicus. For fibers which are length oscillated under conditions not optimal for ATPase activity or oscillatory work, the pattern of exchange shows two pathways for hydrolysis. One pathway has low exchange, because steps controlling Pi release are rapid; the other pathway has high exchange and slow Pi release. Steps controlling Pi release appear rate-limiting for changes in the high-exchange ATPase activity that occur on varying the frequency and amplitude of oscillation. On length oscillation under conditions of optimal ATPase activity or work, only the high-exchange pathway is present. Cross-bridges following the high-exchange pathway are therefore responsible for oscillatory work, the physiological function of the muscle, and behave uniformly with respect to oxygen exchange. The single pathway and the magnitude of the ATPase activity are both similar to results with isometric strained fibers (Lund, J., Webb, M. R., and White, D. C. S. (1987) J. Biol. Chem. 262, 8584-8590). A qualitative model is suggested for oscillatory work by cross-bridges, arising from the common periodicity of the thick and thin filaments in insect flight muscle.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010103 Oxygen Isotopes Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes. Oxygen Isotope,Isotope, Oxygen,Isotopes, Oxygen
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005426 Flight, Animal The use of wings or wing-like appendages to remain aloft and move through the air. Animal Flight,Animal Flights,Flights, Animal
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

J Lund, and M R Webb, and D C White
June 1960, Proceedings of the Royal Society of London. Series B, Biological sciences,
J Lund, and M R Webb, and D C White
October 1966, Proceedings of the Royal Society of London. Series B, Biological sciences,
J Lund, and M R Webb, and D C White
April 1986, Journal of muscle research and cell motility,
J Lund, and M R Webb, and D C White
September 1972, The Journal of general physiology,
J Lund, and M R Webb, and D C White
August 1984, Journal of muscle research and cell motility,
J Lund, and M R Webb, and D C White
June 1968, Experientia,
J Lund, and M R Webb, and D C White
January 1969, Pflugers Archiv : European journal of physiology,
J Lund, and M R Webb, and D C White
October 1983, The Journal of physiology,
J Lund, and M R Webb, and D C White
January 1971, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!