IDH2 deficiency accelerates skin pigmentation in mice via enhancing melanogenesis. 2018

Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea.

Melanogenesis is a complex biosynthetic pathway regulated by multiple agents, which are involved in the production, transport, and release of melanin. Melanin has diverse roles, including determination of visible skin color and photoprotection. Studies indicate that melanin synthesis is tightly linked to the interaction between melanocytes and keratinocytes. α-melanocyte-stimulating hormone (α-MSH) is known as a trigger that enhances melanin biosynthesis in melanocytes through paracrine effects. Accumulated reactive oxygen species (ROS) in skin affects both keratinocytes and melanocytes by causing DNA damage, which eventually leads to the stimulation of α-MSH production. Mitochondria are one of the main sources of ROS in the skin and play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Therefore, mitochondrial dysfunction may serve as a key for the pathogenesis of skin melanogenesis. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. Downregulation of IDH2 expression resulted in an increase in oxidative DNA damage in mice skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also promoted pigmentation on the dorsal skin of mice, as evident from the elevated levels of melanin synthesis markers. Furthermore, pretreatment with mitochondria-targeted antioxidant mito-TEMPO alleviated oxidative DNA damage and melanogenesis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in skin melanogenesis in association with mitochondrial ROS and suggest unique therapeutic strategies for the prevention of skin pigmentation.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D008544 Melanocytes Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES. Melanocyte
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010880 Piperidines A family of hexahydropyridines.
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D000521 alpha-MSH A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. MSH, alpha,alpha Intermedin,alpha-Melanocyte-Stimulating Hormone,(Des-Acetyl)-alpha-MSH,(Desacetyl)alpha-MSH,ACTH (1-13),ACTH (1-13)NH2,ACTH(1-13),Acetylated ACTH (1-13)NH2,Adrenocorticotropin (1-13)NH2,DE-alpha-MSH,Des-Acetyl MSH,Desacetyl alpha-MSH,Desacetyl alpha-Melanocyte-Stimulating Hormone,MSH, (Desacetyl)alpha-,alpha-Melanotropin,Desacetyl alpha MSH,Desacetyl alpha Melanocyte Stimulating Hormone,Hormone, Desacetyl alpha-Melanocyte-Stimulating,Hormone, alpha-Melanocyte-Stimulating,Intermedin, alpha,MSH, Des-Acetyl,alpha MSH,alpha Melanocyte Stimulating Hormone,alpha Melanotropin,alpha-MSH, Desacetyl,alpha-Melanocyte-Stimulating Hormone, Desacetyl
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
September 1960, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
September 2019, Biochimica et biophysica acta. Molecular basis of disease,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
July 2010, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
March 2018, Scientific reports,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
August 2018, International journal of cosmetic science,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
December 2018, International journal of molecular sciences,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
May 2007, The Journal of investigative dermatology,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
February 2024, Fundamental & clinical pharmacology,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
July 2015, Journal of dermatological science,
Jung Hyun Park, and Hyeong Jun Ku, and Jin Hyup Lee, and Jeen-Woo Park
January 2016, PloS one,
Copied contents to your clipboard!