Three-dimensional reconstruction of maltoporin from electron microscopy and image processing. 1988

J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
European Molecular Biology Laboratory, Heidelberg, FRG.

Two dimensional crystals of maltoporin (or phage lambda receptor) were obtained by reconstitution of purified maltoporin trimers and Escherichia coli phospholipids by detergent dialysis. Two different trimer packing forms were observed. One was hexagonal (a = 7.8 nm) and one rectangular (a = 7.8 nm, b = 13.6 nm). In this paper we describe the three-dimensional structure of maltoporin, deduced from the study of the rectangular form by electron microscopy and image processing. At a resolution of approximately 2.5 nm, maltoporin trimers form aqueous channel triplets which appear to merge into a single outlet at the periplasmic surface of the outer membrane. The pore defined by maltoporin has a similar structure to that outlined by the matrix protein. From the results of functional studies by conductance measurement, it is concluded that the three channels defined by maltoporin act, contrary to those formed by the porin (OmpF protein), as a single conducting unit. A tentative outline of the maltoporin promoter is given. Maltoporin appears to be constituted by three different domains: a major rod-like domain spanning the membrane, a minor domain located near the periplasmic surface of the membrane and finally a central domain responsible for the splitting of the channel.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D018272 Porins Porins are protein molecules that were originally found in the outer membrane of GRAM-NEGATIVE BACTERIA and that form multi-meric channels for the passive DIFFUSION of WATER; IONS; or other small molecules. Porins are present in bacterial CELL WALLS, as well as in plant, fungal, mammalian and other vertebrate CELL MEMBRANES and MITOCHONDRIAL MEMBRANES. Pore Protein,Pore Proteins,Porin,Protein, Pore,Proteins, Pore

Related Publications

J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
January 2006, Methods in molecular biology (Clifton, N.J.),
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
January 1995, Methods in cell biology,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
June 1991, Bulletin de l'Association des anatomistes,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
March 1965, Mikroskopie,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
March 2000, Journal of microscopy,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
March 1986, Journal of microscopy,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
February 1989, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
October 1992, Journal of bacteriology,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
March 2015, Frontiers of medicine,
J Lepault, and B Dargent, and W Tichelaar, and J P Rosenbusch, and K Leonard, and F Pattus
December 2009, Applied optics,
Copied contents to your clipboard!