Flagellum inheritance in Trypanosoma brucei requires a kinetoplastid-specific protein phosphatase. 2018

Qing Zhou, and Gang Dong, and Ziyin Li
From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and.

Trypanosoma brucei causes sleeping sickness in humans and nagana in cattle in sub-Saharan Africa and alternates between its mammalian hosts and its insect vector, the tsetse fly. T. brucei uses a flagellum for motility, cell division, and cell-cell communication. Proper positioning and attachment of the newly assembled flagellum rely on the faithful duplication and segregation of flagellum-associated cytoskeletal structures. These processes are regulated by the polo-like kinase homolog TbPLK, whose activity and abundance are under stringent control to ensure spatiotemporally regulated phosphorylation of its substrates. However, it remains unclear whether a protein phosphatase that counteracts TbPLK activity is also involved in this regulation. Here, we report that a putative kinetoplastid-specific protein phosphatase, named KPP1, has essential roles in regulating flagellum positioning and attachment in T. brucei KPP1 localized to multiple flagellum-associated cytoskeletal structures and co-localized with TbPLK in several cytoskeletal structures at different cell-cycle stages. KPP1 depletion abolished basal body segregation, inhibited the duplication of the centrin arm and the hook complex of the bilobe structure, and disrupted the elongation of the flagellum attachment zone, leading to flagellum misplacement and detachment and cytokinesis arrest. Importantly, KPP1-depleted cells lacked dephosphorylation of TbCentrin2, a TbPLK substrate, at late cell-cycle stages. Together, these results suggest that KPP1-mediated protein dephosphorylation regulates the duplication and segregation of flagellum-associated cytoskeletal structures, thereby promoting flagellum positioning and attachment. These findings highlight the requirement of reversible protein phosphorylation, mediated by TbPLK and KPP1, in regulating flagellum inheritance in T. brucei.

UI MeSH Term Description Entries
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei
D015800 Protozoan Proteins Proteins found in any species of protozoan. Proteins, Protozoan
D017385 Sequence Homology The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species. Homologous Sequences,Homologs, Sequence,Sequence Homologs,Homolog, Sequence,Homologies, Sequence,Homologous Sequence,Homology, Sequence,Sequence Homolog,Sequence Homologies,Sequence, Homologous,Sequences, Homologous

Related Publications

Qing Zhou, and Gang Dong, and Ziyin Li
July 2012, Journal of cell science,
Qing Zhou, and Gang Dong, and Ziyin Li
September 2020, The Journal of biological chemistry,
Qing Zhou, and Gang Dong, and Ziyin Li
July 2014, Nature reviews. Microbiology,
Qing Zhou, and Gang Dong, and Ziyin Li
June 2018, Proceedings of the National Academy of Sciences of the United States of America,
Qing Zhou, and Gang Dong, and Ziyin Li
January 2009, Annual review of microbiology,
Qing Zhou, and Gang Dong, and Ziyin Li
January 2024, bioRxiv : the preprint server for biology,
Qing Zhou, and Gang Dong, and Ziyin Li
January 2015, PloS one,
Copied contents to your clipboard!