Distinct molecular forms of human T cell receptor gamma/delta detected on viable T cells by a monoclonal antibody. 1988

J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
Department of Immunology, Netherlands Cancer Institute, Amsterdam.

A second type of TCR molecule has been identified on human and murine T lymphocytes, which involves the protein products of the gamma and delta genes. T lymphocytes bearing this receptor may constitute a separate cell lineage with a distinct immune function. We have produced an mAb, which specifically detects human TCR-gamma/delta in native as well as denatured states, this in contrast to previously used anti-gamma chain peptide sera, which only reacted with denatured protein. The receptor occurs in different molecular forms, with or without interchain disulphide bonds, in which a delta chain may or may not be detected by cell surface iodination. The mAb is reactive with all these receptor forms. Therefore, this antibody could be used to determine the expression of TCR-gamma/delta on viable human T lymphocytes. In normal individuals, TCR-gamma/delta was found on a subset composing 2-7% of CD3+ lymphocytes in peripheral blood and 0.1-1.0% in thymus. The majority of these cells do not express the CD4 or CD8 antigens, although a significant percentage of CD8+ cells was found. TCR-gamma/delta+ cells in peripheral blood are resting lymphocytes, as judged by ultrastructural analysis. T cell clones with different receptor types can display MHC-nonrestricted cytolytic activity, which is shown to be induced by the culture conditions, most likely by growth factors such as IL-2. This strongly suggests that TCR-gamma/delta does not play a role in target cell recognition in MHC-nonrestricted cytotoxicity. The anti-TCR-gamma/delta antibody can specifically induce cytotoxic activity in clones expressing the receptor, but in addition inhibit growth factor induced cytotoxicity, which indicates a regulatory role of the TCR-gamma/delta/CD3 complex in MHC-nonrestricted cytotoxicity.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
March 1991, Seminars in immunology,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
May 1989, Journal of immunology (Baltimore, Md. : 1950),
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
August 1988, The Journal of experimental medicine,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
January 1992, Immunogenetics,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
October 1986, Proceedings of the National Academy of Sciences of the United States of America,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
July 1988, European journal of immunology,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
March 1994, Journal of immunology (Baltimore, Md. : 1950),
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
January 1992, Progress in histochemistry and cytochemistry,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
October 1994, Immunology,
J Borst, and J J van Dongen, and R L Bolhuis, and P J Peters, and D A Hafler, and E de Vries, and R J van de Griend
December 1995, Journal of virology,
Copied contents to your clipboard!