Microvascular effects of atrial natriuretic factor: interaction with alpha 1- and alpha 2-adrenoceptors. 1988

J E Faber, and D R Gettes, and D P Gianturco
Department of Physiology, University of North Carolina, Chapel Hill 27599-7545.

The cremaster skeletal muscle of anesthetized rats was denervated and extended with intact circulation into a tissue bath. Intravital microscopy was used to measure microvessel diameter at three different anatomical levels within the microcirculation: large distributing arterioles (x control diameter = 100 +/- 7 micron), large capacitance venules (147 +/- 8 micron), and small terminal arterioles (17 +/- 1 micron). Norepinephrine (NE) was added to the cremaster bath to produce intermediate reductions in diameter of large arterioles and venules (55% and 38% of maximum constriction, respectively). In the presence of NE tone, bath-added atrial natriuretic factor (ANF) produced concentration-dependent dilation of both arterioles and venules. Arteriolar IC25 = 18 pmol and IC50 = 1.2 X 10(-10) M; venules exhibited similar sensitivity. However, the highest ANF concentration examined (10(-7) M) only reversed NE-induced tone by 70%. In a second large vessel group ANF completely reversed constriction induced by the alpha 1-adrenoceptor agonist, phenylephrine, in the presence of 5 X 10(-7) M yohimbine. However, vessels constricted with the alpha 2-receptor agonist UK-14,304 (in the presence of 10(-8) M prazosin) were insensitive to ANF. A third group of terminal arterioles, which possess considerable spontaneous "intrinsic" tone, were studied in the absence of alpha-receptor agonists. Significant dilation occurred at greater than 10(-7) M, and the maximal response was only 25% of complete dilation with adenosine. These data indicate that ANF exhibits a high potency and selectivity for reversal of alpha 1-adrenoceptor-mediated constriction of large arterioles and venules. Constriction produced by alpha 2-adrenoceptor occupation or by nonadrenergic "intrinsic" mechanisms appears to be insensitive to ANF. We propose that the ability of ANF to reduce microvascular resistance depends on the relative contribution of alpha 1-, alpha 2-, and intrinsic vasoconstrictor components to the prevailing level of smooth muscle tone. Differences in these components among regional circulations and between arterial and venous smooth muscle may contribute to the systemic hemodynamic pattern produced by ANF.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011810 Quinoxalines Quinoxaline
D000068438 Brimonidine Tartrate A quinoxaline derivative and ADRENERGIC ALHPA-2 RECEPTOR AGONIST that is used to manage INTRAOCULAR PRESSURE associated with OPEN-ANGLE GLAUCOMA and OCULAR HYPERTENSION. 5-Bromo-6-(2-imidazolin-2-ylamino)quinoxaline D-tartrate,5-bromo-6-(imidazolidinylideneamino)quinoxaline,5-bromo-6-(imidazolin-2-ylamino)quinoxaline,AGN 190342,AGN-190342,Alphagan,Alphagan P,Brimonidine,Brimonidine Purite,Brimonidine Tartrate (1:1),Brimonidine Tartrate (1:1), (S-(R*,R*))-Isomer,Brimonidine Tartrate, (R-(R*,R*))-Isomer,Bromoxidine,Mirvaso,Ratio-Brimonidine,Sanrosa,UK 14,304,UK 14,304-18,UK 14304,UK 14308,UK-14,304-18,UK-14,308,UK-14304,AGN190342,Ratio Brimonidine,UK 14,304 18,UK 14,30418,UK 14,308,UK14,30418,UK14,308,UK14304
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions

Related Publications

J E Faber, and D R Gettes, and D P Gianturco
July 1992, Circulation research,
J E Faber, and D R Gettes, and D P Gianturco
December 1997, Clinical and experimental pharmacology & physiology,
J E Faber, and D R Gettes, and D P Gianturco
October 1990, The American journal of physiology,
J E Faber, and D R Gettes, and D P Gianturco
December 2007, Anesthesia and analgesia,
J E Faber, and D R Gettes, and D P Gianturco
May 1980, European journal of pharmacology,
J E Faber, and D R Gettes, and D P Gianturco
January 1991, Life sciences,
J E Faber, and D R Gettes, and D P Gianturco
May 1986, Neuropharmacology,
J E Faber, and D R Gettes, and D P Gianturco
June 1986, Federation proceedings,
Copied contents to your clipboard!