The hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate by MCF-7 human breast cancer cells. 1988

J H MacIndoe
Department of Internal Medicine, University of Iowa College of Medicine, Iowa City.

Reports of estrone (E1) and dehydroepiandrosterone (DHEA) sulfatase (sulfohydrolase) activities within many human breast cancers have prompted us to undertake the identification and partial characterization of these enzyme activities within MCF-7 human breast cancer cells. Enzyme assays were performed within subcellular preparations and intact cultures by quantifying the total nonpolar 3H-labeled metabolites formed from [3H]E1 sulfate (E1S) and [3H]DHEA sulfate (DHEAS). The results have shown that the hydrolysis of each steroid sulfate is mediated by different particulate enzymes, which demonstrate optimal activity between pH 6.0-7.0. The analysis of enzyme kinetic data showed the Km values of E1S and DHEAS for their enzymes to be approximately 6.3 and 3.6 microM/L, respectively. Neither enzyme was subject to product inhibition. Androsterone sulfate and pregnenolone sulfate produced significant inhibition of E1, but not DHEA, sulfatase activity. E1S inhibited DHEA sulfatase competitively, with an approximate Ki of 11 microM, whereas DHEAS inhibited E2 sulfatase in a noncompetitive fashion, demonstrating an approximate Ki of 0.6 microM. Studies carried out with intact MCF-7 cultures using physiological concentrations of 3H-labeled E1S (2 nM) or DHEAS (1 microM) showed the accumulation of nonpolar metabolites during a 20-h incubation period. When cultures were incubated with similar concentrations of both steroid sulfates the apparent intracellular activity of E1 sulfatase was reduced by approximately 70%, whereas DHEA sulfatase activity remained unchanged. The results of these studies confirm the ability of MCF-7 cells to hydrolyze extracellular E1S and DHEAS, indicate that these reactions are mediated by different enzymes, and demonstrate that DHEAS is a potent inhibitor of MCF-7 E1 sulfatase. Circulating DHEAS, therefore, may substantially limit the ability of most postmenopausal breast cancers to use E1S as a substrate for intracellular estrogen biosynthesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer
D004970 Estrone An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women. Folliculin (Hormone),Estrone, (+-)-Isomer,Estrone, (8 alpha)-Isomer,Estrone, (9 beta)-Isomer,Estrovarin,Kestrone,Unigen,Wehgen
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D013429 Sulfatases A class of enzymes that catalyze the hydrolysis of sulfate ESTERS. Sulfatase
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D043266 Steryl-Sulfatase An arylsulfatase with high specificity towards sulfated steroids. Defects in this enzyme are the cause of ICHTHYOSIS, X-LINKED. 3 Beta-Hydroxysteroid Sulfate Sulfatase,Arylsulfatase C,Arylsulphatase C,Cholesterol Sulfatase,Cholesterol Sulfate Sulfatase,DHEA Sulfatase,Dehydroepiandrosterone Sulfate Sulfatase,Estrone Sulfate Sulfatase,Estrone Sulfate Sulfohydrolase,Steroid Sulfatase,Steroid Sulfohydrolase,Steroid Sulphatase,Sterol Sulfatase,Sterylsulfatase,3 Beta Hydroxysteroid Sulfate Sulfatase,Steryl Sulfatase,Sulfatase, Cholesterol,Sulfatase, Cholesterol Sulfate,Sulfatase, DHEA,Sulfatase, Dehydroepiandrosterone Sulfate,Sulfatase, Estrone Sulfate,Sulfatase, Steroid,Sulfatase, Sterol,Sulfate Sulfatase, Cholesterol,Sulfate Sulfatase, Dehydroepiandrosterone,Sulfate Sulfatase, Estrone,Sulfate Sulfohydrolase, Estrone,Sulfohydrolase, Estrone Sulfate,Sulfohydrolase, Steroid,Sulphatase, Steroid

Related Publications

J H MacIndoe
February 2016, Environmental science and pollution research international,
J H MacIndoe
May 1998, Cancer letters,
J H MacIndoe
September 1996, The Journal of steroid biochemistry and molecular biology,
J H MacIndoe
March 1985, International journal of cancer,
Copied contents to your clipboard!