Interaction of amiloride and hydrochlorothiazide with atrial natriuretic factor in the medullary collecting duct. 1988

D R Wilson, and U Honrath, and H Sonnenberg
Department of Physiology, University of Toronto, Ont., Canada.

Medullary collecting duct function was studied using the in vivo microcatheterization technique in three groups of rats receiving amiloride, hydrochlorothiazide, or both diuretics. In each group of animals, atrial natriuretic factor (ANF99-126) was given in the second phase of the experiment. The combination of amiloride and hydrochlorothiazide resulted in a more marked natriuresis than either diuretic given as a single agent. Sodium reabsorption in the medullary collecting duct, as a fraction of the delivered load, was reduced from 64% (amiloride) and 69% (hydrochlorothiazide) to 29% (amiloride and hydrochlorothiazide). Atrial natriuretic factor reduced collecting duct sodium reabsorption when added to amiloride or hydrochlorothiazide to 23% and to 41%, respectively, but had no additional effect when given with amiloride and hydrochlorothiazide. Potassium excretion with amiloride and hydrochlorothiazide was intermediate between amiloride or hydrochlorothiazide given as single agents. With the diuretic combination, potassium transport showed no significant reabsorption or secretion along the medullary collecting duct, amiloride was associated with potassium reabsorption, and hydrochlorothiazide was associated with potassium secretion in the duct. The results confirm the importance of the medullary collecting duct as a site of diuretic action. The known additive effects of amiloride and hydrochlorothiazide on sodium excretion and the opposing effects of these agents on potassium excretion occur, to a major degree, in the medullary collecting duct. Furthermore, the additive effects of amiloride and ANF indicate that blocking of amiloride-sensitive sodium channels is not the only mechanism of action of ANF on duct salt transport in vivo.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008297 Male Males
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004573 Electrolytes Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed) Electrolyte
D006852 Hydrochlorothiazide A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It is used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. Dichlothiazide,Dihydrochlorothiazide,Esidrex,Esidrix,HCTZ,HydroDIURIL,Hypothiazide,Oretic,Sectrazide
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret

Related Publications

D R Wilson, and U Honrath, and H Sonnenberg
October 1988, The Journal of clinical investigation,
D R Wilson, and U Honrath, and H Sonnenberg
September 1990, Pflugers Archiv : European journal of physiology,
D R Wilson, and U Honrath, and H Sonnenberg
January 1989, Science (New York, N.Y.),
D R Wilson, and U Honrath, and H Sonnenberg
September 1988, The Journal of clinical investigation,
D R Wilson, and U Honrath, and H Sonnenberg
August 1988, The American journal of physiology,
D R Wilson, and U Honrath, and H Sonnenberg
October 1990, The American journal of physiology,
D R Wilson, and U Honrath, and H Sonnenberg
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
D R Wilson, and U Honrath, and H Sonnenberg
August 2001, Cardiovascular research,
D R Wilson, and U Honrath, and H Sonnenberg
September 2009, American journal of physiology. Renal physiology,
D R Wilson, and U Honrath, and H Sonnenberg
August 1986, The American journal of physiology,
Copied contents to your clipboard!