Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. 2018

Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
Sharif University of Technology, Department of Materials Science and Engineering, P.O. Box: 11365-9466, Tehran, Iran; Federal University of Rio de Janeiro, Department of Materials Science and Engineering, P.O. Box: 68505, 21945-970 Rio de Janeiro, Brazil. Electronic address: m.fazeli@metalmat.ufrj.br.

The current study deals with the preparation and characterization of polysaccharide-based biocomposite films acquired by the incorporation of cellulose nanofiber within glycerol plasticized matrix formed by starch. The application of starch-based films is limited due to highly hydrophilic nature and poor mechanical properties. These problems are solved by forming a nanocomposite of thermoplastic starch (TPS) as matrix and cellulose nanofiber (CNF) as reinforcement. CNF is successfully prepared from short henequen fibers which consist of almost 60% cellulose by a chemo-mechanical process. TPS/CNF composite films are prepared by the polymer solution casting method, and their characterizations are obtained by water vapor transmission rate (WVTR), atomic force microscopy (AFM), oxygen transmission rate (OTR), X-ray diffraction, light transmittance and tensile test. The 0.4 wt% CNF loaded TPS films showed approximately the maximum improvement in tensile strength. Tensile strength and elastic modulus increased by up to 80% and 170% respectively. Above 0.5 wt% CNF, tensile strength starts to deteriorate. WVTR and OTR results show improvement in water vapor barrier properties of TPS matrix. The AFM analysis shows the topography of the surface of the nanocomposite. The morphology of nanofibers is studied by using the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM).

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010968 Plasticizers Materials incorporated mechanically in plastics (usually PVC) to increase flexibility, workability or distensibility; due to the non-chemical inclusion, plasticizers leach out from the plastic and are found in body fluids and the general environment. Plasticizer
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D013213 Starch Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants. Amylomaize Starch,Amylum,Cornstarch,Keoflo,Starch, Amylomaize
D013227 Steam Water in its gaseous state. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Water Vapor,Steams,Vapor, Water,Vapors, Water,Water Vapors
D013718 Tensile Strength The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001) Strength, Tensile,Strengths, Tensile,Tensile Strengths
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron

Related Publications

Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
July 2023, International journal of biological macromolecules,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
March 2021, Colloids and surfaces. B, Biointerfaces,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
April 2019, Carbohydrate polymers,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
February 2016, International journal of biological macromolecules,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
July 2016, Materials (Basel, Switzerland),
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
August 2022, Polymers,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
February 2018, International journal of biological macromolecules,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
June 2021, International journal of biological macromolecules,
Mahyar Fazeli, and Meysam Keley, and Esmaeil Biazar
January 2024, International journal of biological macromolecules,
Copied contents to your clipboard!