Differential localization of 5-HT1 receptors on myenteric and submucosal neurons. 1988

J J Galligan, and A Surprenant, and M Tonini, and R A North
Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201.

Intracellular recordings were made from guinea pig enteric neurons, and the effects of 5-hydroxytryptamine (5-HT) and the 5-HT1 selective agonists 5-carboxyamidotryptamine (5-CT) and 8-hydroxy-2-(n-dipropylamino)tetralin (DPAT) were studied on membrane potential and synaptic potentials. Most myenteric AH neurons were hyperpolarized when these agonists were applied by superfusion; this hyperpolarization was due to an increase in potassium conductance. Membrane hyperpolarizations to 5-HT, 5-CT, or DPAT were never observed in submucous neurons. Fast nicotinic excitatory postsynaptic potentials (EPSPs) and slow EPSPs recorded from S neurons in the myenteric plexus were suppressed by 5-HT, 5-CT, and DPAT; slow EPSPs in myenteric AH neurons were also inhibited by these agonists. Fast and slow EPSPs recorded from submucous S neurons were not affected by 5-CT or DPAT. However, slow EPSPs recorded from submucous AH neurons were readily blocked by 5-CT and DPAT. The results indicate that 5-HT1 receptors are located on the cell bodies of myenteric but not submucosal neurons. The nerve terminals that release the mediator or mediators of fast and slow synaptic potentials in myenteric neurons also have 5-HT1 receptors and presumably arise from other myenteric neurons; the nerve terminals responsible for the slow EPSP to AH neurons seem to be the only elements of the submucous plexus that express 5-HT1 receptors.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013764 Tetrahydronaphthalenes Partially saturated 1,2,3,4-tetrahydronaphthalene compounds. Tetralins

Related Publications

J J Galligan, and A Surprenant, and M Tonini, and R A North
February 2004, Current drug targets. CNS and neurological disorders,
J J Galligan, and A Surprenant, and M Tonini, and R A North
August 1989, European journal of pharmacology,
J J Galligan, and A Surprenant, and M Tonini, and R A North
January 1992, Neuroscience and biobehavioral reviews,
J J Galligan, and A Surprenant, and M Tonini, and R A North
September 1984, Brain research,
J J Galligan, and A Surprenant, and M Tonini, and R A North
February 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J Galligan, and A Surprenant, and M Tonini, and R A North
January 1986, European journal of pharmacology,
J J Galligan, and A Surprenant, and M Tonini, and R A North
August 2000, American journal of physiology. Gastrointestinal and liver physiology,
J J Galligan, and A Surprenant, and M Tonini, and R A North
September 1984, Brain research,
J J Galligan, and A Surprenant, and M Tonini, and R A North
March 2001, European journal of pharmacology,
J J Galligan, and A Surprenant, and M Tonini, and R A North
September 2007, Synapse (New York, N.Y.),
Copied contents to your clipboard!