Multiple abnormal beta-hexosaminidase alpha chain mRNAs in a compound-heterozygous Ashkenazi Jewish patient with Tay-Sachs disease. 1988

K Ohno, and K Suzuki
Department of Neurology, University of North Carolina School of Medicine, Chapel Hill 27599.

Abnormal beta-hexosaminidase alpha chain cDNA clones were isolated from fibroblasts of an Ashkenazi Jewish patient with Tay-Sachs disease. Four abnormal cDNA clones were sequenced in their entirety. We showed previously that three of these mRNAs retained intron 12 with a mutation from G to C at the 5' donor site and that the patient was heterozygous with respect to this splicing defect (Ohno, K., and Suzuki, K., (1988) Biochem. Biophys. Res. Commun. 153, 463-469). One clone retained, in addition to intron 12, intron 13, which was truncated and polyadenylated due to a polyadenylation signal within intron 13. The fourth clone did not contain intron 12 and was missing exon 12. Some of these abnormal mRNAs were also missing one or more of upstream exons. The regions of exon 12-intron 12 and of upstream exons were evaluated in a total of 30 clones, including those completely sequenced, by restriction mapping and Southern analysis with appropriate probes. Of the 25 cDNA clones that included the exon 12-intron 12 region, 11 contained the exon 12-intron 12 sequence with the junctional transversion, and 11 were missing both exon 12 and intron 12. Among the 12 clones that included the region of exon 3-exon 9, 7 were missing one or more of upstream exons. Three clones gave results expected of normal cDNA in the region of exons 12 and 13. One of the three, furthermore, was 3.6-kilobases long and contained the completely normal beta-hexosaminidase alpha chain mRNA sequence on the 3' side and an abnormal 1.7-kilobase segment at the 5' end. These findings suggest that the splicing defect results in either retention of intron 12 or skipping of exon 12 in approximately equal proportions and that remote upstream exons are also frequently excised out. The three clones that were normal in the exon 12-intron 12 region could have derived from the other yet-to-be-characterized mutant allele. However, we were unable to obtain firm evidence that the abnormal upstream sequence is directly related to Tay-Sachs disease.

UI MeSH Term Description Entries
D007585 Jews An ethnic group with historical ties to the land of ISRAEL and the religion of JUDAISM. Jew
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006580 Genetic Carrier Screening Identification of individuals who are heterozygous at a GENETIC LOCUS for a recessive PHENOTYPE. Carriers, Genetic, Detection,Genetic Carriers, Detection,Heterozygote Detection,Carrier Detection, Genetic,Detection, Genetic Carrier,Genetic Carrier Detection,Heterozygote Screening,Carrier Screening, Genetic,Detection, Heterozygote,Screening, Genetic Carrier,Screening, Heterozygote,Screenings, Genetic Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K Ohno, and K Suzuki
January 1998, Ryoikibetsu shokogun shirizu,
K Ohno, and K Suzuki
June 1987, American journal of human genetics,
K Ohno, and K Suzuki
February 1988, The Journal of biological chemistry,
K Ohno, and K Suzuki
January 1992, Human mutation,
K Ohno, and K Suzuki
September 1984, Proceedings of the National Academy of Sciences of the United States of America,
K Ohno, and K Suzuki
March 1991, American journal of human genetics,
K Ohno, and K Suzuki
January 1977, Progress in clinical and biological research,
Copied contents to your clipboard!