V1 vs. combined V1+V2 vasopressin blockade after hemorrhage in conscious dogs. 1988

J F Liard
Department of Physiology, Medical College of Wisconsin, Milwaukee 53226.

We examined the hypothesis that V2-like receptors might contribute to the hemodynamic response seen after blockade of the vasoconstrictor (V1) effect of arginine vasopressin (AVP) in nonhypotensive hemorrhage. Seven chronically instrumented dogs were bled 15 ml/kg within 15 min on two different days, at least 3 days apart, and then injected either with the V1 antagonist [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)2-(O-methyl)tyrosine]AVP [d(CH2)5Tyr(Me)AVP, 10 micrograms/kg] or with the combined V1+V2 antagonist [1(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)2-(O-ethyl)-D-tyrosine)4-valine]AVP [d(CH2)5-D-Tyr-(Et)VAVP (10 micrograms/kg)]. Mean arterial pressure, heart rate, and cardiac output (electromagnetic flowmeter) were measured before as well as after hemorrhage and for 10 min after antagonist administration. Both antagonists given after hemorrhage significantly decreased mean arterial pressure as well as total peripheral resistance and increased cardiac output. The V1 antagonist also increased heart rate significantly. No significant hemodynamic changes were measured in another group of six dogs in the absence of antagonist treatment. Although hemodynamic changes tended to be greater with the V1 antagonist than with the combined V1+V2 antagonist, a significant difference between the two analogues was established only for heart rate. These results indicate that in hemorrhage interaction with V2-like receptors plays only a modest role in the hemodynamic changes after V1 blockade in conscious dogs, contrary to what was found in dehydration.

UI MeSH Term Description Entries
D008297 Male Males
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006470 Hemorrhage Bleeding or escape of blood from a vessel. Bleeding,Hemorrhages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J F Liard
October 1993, The American journal of physiology,
J F Liard
February 1994, The American journal of physiology,
J F Liard
May 1989, Quarterly journal of experimental physiology (Cambridge, England),
J F Liard
June 1994, Journal of applied physiology (Bethesda, Md. : 1985),
J F Liard
September 1983, The American journal of physiology,
Copied contents to your clipboard!