Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. 1988

S Ueda, and T Shiroza, and H K Kuramitsu
Department of Microbiology-Immunology, Northwestern University Medical and Dental Schools, Chicago, IL 60611.

The nucleotide sequence of the gtfC gene, which codes for glucosyltransferase synthesizing both water-soluble and water-insoluble glucans, and its flanking regions from Streptococcus mutans GS-5, was determined. Although the gtfC gene (4218 bp) is preceded by a Shine-Dalgarno (SD) sequence, a promoter-like sequence for this gene could not be identified. The gtfC gene product composed of 1375 amino acid residues (approx. 153 kDa) is generally hydrophilic with three small hydrophobic domains. Two direct repeating units were found near the C terminus of the peptide. The gtfC gene has extensive homology with the previously sequenced gtfB gene. The homologous regions correspond to the signal sequence, an internal region, and the direct repeating units of the peptide. An open reading frame preceded by an SD sequence and followed by an inverted repeat sequence was found immediately downstream from the gtfC gene. The combined sequences of the gtfB and gtfC genes as well as flanking regions suggest that the two gtf genes and the small downstream coding region could be coordinately expressed within an operon. The possible evolution of the gtfC gene in S. mutans GS-5 is also discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.

Related Publications

S Ueda, and T Shiroza, and H K Kuramitsu
January 2000, Plasmid,
S Ueda, and T Shiroza, and H K Kuramitsu
November 1988, Nucleic acids research,
S Ueda, and T Shiroza, and H K Kuramitsu
April 1986, Infection and immunity,
S Ueda, and T Shiroza, and H K Kuramitsu
January 1993, Journal of general microbiology,
S Ueda, and T Shiroza, and H K Kuramitsu
December 1976, Oral surgery, oral medicine, and oral pathology,
S Ueda, and T Shiroza, and H K Kuramitsu
September 2012, Journal of bacteriology,
S Ueda, and T Shiroza, and H K Kuramitsu
September 1987, Infection and immunity,
S Ueda, and T Shiroza, and H K Kuramitsu
January 1995, Developments in biological standardization,
S Ueda, and T Shiroza, and H K Kuramitsu
August 1988, Infection and immunity,
Copied contents to your clipboard!