The actions of 5-hydroxytryptamine receptor agonists and antagonists at pre- and postjunctional level on the canine saphenous vein. 1988

M Q Paiva, and M M Caramona, and W Osswald
Laboratório de Farmacologia, Faculdade de Medicina, Porto, Portugal.

The prejunctional and postjunctional 5-HT receptors of the canine saphenous vein were studied. The release of 3H-noradrenaline (3H-NA) from incubated saphenous vein strips was inhibited by 5-hydroxytryptamine (5-HT) in a concentration-dependent way (5-HT concentrations: 0.01, 0.1 and 1.0 mumol.l-1), but not by the selective 5-HT1A agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT; 1 and 10 mumol.l-1). The inhibitory effect of 5-HT was antagonized by metitepine and methysergide, but not by yohimbine, (-)-pindolol or ketanserin. In strips preincubated with 5-HT (1.2 mumol.l-1), the fractional release of 3H-NA was slightly reduced (paired experiments). 5-HT and 8-OH-DPAT caused concentration-dependent contractions of the saphenous smooth muscle. A parallel shift of the concentration-response curve for 8-OH-DPAT to the right was caused by metitepine and yohimbine, but not by ketanserin. The contractions caused by 5-HT were antagonized by metitepine and yohimbine (parallel displacement of the curves to the right), as well as by ketanserin and methysergide (with a depression of the upper part of the curve). Blockade of alpha-adrenoceptors (due to prazosin plus a low concentration of yohimbine) also resulted in a weak antagonistic effect. Ketanserin and metitepine displaced the noradrenaline concentration-response curve to the right. We conclude that the saphenous vein of the dog is endowed with prejunctional receptors of the 5-HT1 type which can not be classified as belonging either to the 1A or 1B subtype; and that at the postjunctional level 5-HT1 (possibly of the 1D subtype) and 5-HT2 receptors are present.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012501 Saphenous Vein The vein which drains the foot and leg. Saphenous Veins,Vein, Saphenous,Veins, Saphenous
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D013764 Tetrahydronaphthalenes Partially saturated 1,2,3,4-tetrahydronaphthalene compounds. Tetralins

Related Publications

M Q Paiva, and M M Caramona, and W Osswald
January 1981, Postgraduate medical journal,
M Q Paiva, and M M Caramona, and W Osswald
February 1994, The Journal of pharmacology and experimental therapeutics,
M Q Paiva, and M M Caramona, and W Osswald
January 1986, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques,
M Q Paiva, and M M Caramona, and W Osswald
March 1995, The Journal of pharmacology and experimental therapeutics,
M Q Paiva, and M M Caramona, and W Osswald
January 1982, Advances in neurology,
M Q Paiva, and M M Caramona, and W Osswald
August 1978, British journal of pharmacology,
M Q Paiva, and M M Caramona, and W Osswald
January 1991, Scandinavian journal of gastroenterology. Supplement,
M Q Paiva, and M M Caramona, and W Osswald
June 1989, Neuropharmacology,
M Q Paiva, and M M Caramona, and W Osswald
January 1996, Fundamental & clinical pharmacology,
M Q Paiva, and M M Caramona, and W Osswald
May 1979, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!