The Enthalpy-entropy Compensation Phenomenon. Limitations for the Use of Some Basic Thermodynamic Equations. 2018

Sergei Khrapunov
Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.

The thermodynamic analyses of proteins, protein-ligands and protein-nucleic acid complexes involves the entropy-enthalpy (S-H) compensation phenomenon. We have examined the question whether the observed compensation is artificial or reflects anything more than the well-known laws of statistical thermodynamics (so-called extra-thermodynamic compensation). We have shown that enthalpy- entropy compensation (EEC) is mainly the trivial consequence of the basic thermodynamic laws and there are no experimental evidences for existence of the extra-thermodynamic compensation. In most cases EEC obtained in the experiments through the plot enthalpies (ΔH) and entropies (TΔS) versus one another is meaningless due to the large correlated errors in ΔH and TΔS, unless special measures are taken to minimize, quantify and propagate these errors. Van't Hoff equation can be used for entropy calculation in limited cases when enthalpy is measured in independent experiments. Eyring equation cannot be used for calculation of entropy in any case and should be excluded from scientific use. Both equation, Van't Hoff and Eyring cannot be used for simultaneous calculation of the enthalpy and entropy values using one set of data. All the data obtained in this way should be recognized as erroneous.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical
D019277 Entropy The measure of that part of the heat or energy of a system which is not available to perform work. Entropy increases in all natural (spontaneous and irreversible) processes. (From Dorland, 28th ed) Entropies

Related Publications

Sergei Khrapunov
March 2002, Journal of biosciences,
Sergei Khrapunov
November 1999, Journal of colloid and interface science,
Sergei Khrapunov
May 2017, European biophysics journal : EBJ,
Sergei Khrapunov
March 2001, Protein science : a publication of the Protein Society,
Sergei Khrapunov
August 1994, Biophysical chemistry,
Sergei Khrapunov
October 2023, The Journal of chemical physics,
Sergei Khrapunov
April 2015, Journal of chemical theory and computation,
Copied contents to your clipboard!