Hydroxylated Polybrominated Diphenyl Ethers Exert Estrogenic Effects via Non-Genomic G Protein-Coupled Estrogen Receptor Mediated Pathways. 2018

Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China

Numerous studies have indicated the estrogenic effects of polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs (OH-PBDEs). However, the previous mechanistic studies focused on their estrogenic effects through genomic transcriptional activation of estrogen receptors. The present study aimed to investigate the estrogenic effects of PBDEs and OH-PBDEs via nongenomic G protein-coupled estrogen receptor (GPER) pathways. The binding affinities of 12 PBDEs and 18 OH-PBDEs with GPER were determined by a fluorescence competitive binding assay in a human breast cancer cell line (SKBR3). Molecular docking was performed to simulate the interactions. Their activities on GPER pathways were investigated by detecting calcium mobilization and cyclic adenosine monophosphate (cAMP) accumulation in SKBR3 cells. The effects on SKBR3 cell migration were investigated using Boyden chamber and wound-healing assays. Our results showed that 11 of the OH-PBDEs but none of the PBDEs bound to GPER directly. Relative binding affinities ranged from 1.3% to 20.0% compared to 17β-estradiol. Docking results suggested that the hydroxyl group played an essential role in the binding of OH-PBDEs to GPER by forming hydrogen bond interactions. Most of the OH-PBDEs activated subsequent GPER signaling pathways. Among them, 4'-OH-BDE-049, 5'-OH-BDE-099, and 3'-OH-BDE-154 displayed the highest activity with lowest effective concentrations (LOECs) of 10-100 nM. These three OH-PBDEs also promoted SKBR3 cell migration via GPER pathways with LOECs of 0.1-1 μM. OH-PBDEs could bind to GPER, activate the subsequent signaling pathways, and promote SKBR3 cell migration via GPER pathways. OH-PBDEs might exert estrogenic effects by a novel nongenomic mechanism involving the activation of GPER at nanomolar concentrations. https://doi.org/10.1289/EHP2387.

UI MeSH Term Description Entries
D011075 Polybrominated Biphenyls Biphenyl compounds which are extensively brominated. Many of these compounds are toxic environmental pollutants. Polybromobiphenyl Compounds,Biphenyls, Polybrominated,Compounds, Polybromobiphenyl
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D055768 Halogenated Diphenyl Ethers Compounds that contain two halogenated benzene rings linked via an OXYGEN atom. Many polybrominated diphenyl ethers are used as FLAME RETARDANTS. Brominated Diphenyl Ethers,Chlorinated Diphenyl Ethers,Fluorinated Diphenyl Ethers,Iodinated Diphenyl Ethers,PBDE Compounds,PBDEs,PCDE Compounds,PCDEs,Polybrominated Diphenyl Ethers,Diphenyl Ethers, Brominated,Diphenyl Ethers, Chlorinated,Diphenyl Ethers, Fluorinated,Diphenyl Ethers, Halogenated,Diphenyl Ethers, Iodinated,Diphenyl Ethers, Polybrominated,Ethers, Brominated Diphenyl,Ethers, Chlorinated Diphenyl,Ethers, Fluorinated Diphenyl,Ethers, Halogenated Diphenyl,Ethers, Iodinated Diphenyl,Ethers, Polybrominated Diphenyl
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking

Related Publications

Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
September 2020, Environmental pollution (Barking, Essex : 1987),
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
July 2013, Toxicology,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
April 2013, Environmental science. Processes & impacts,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
February 2012, Chemosphere,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
November 2023, Toxicology,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
December 2012, Critical care medicine,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
March 2014, Ecotoxicology and environmental safety,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
September 2011, Environmental science & technology,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
April 2013, Environmental science & technology,
Lin-Ying Cao, and Xiao-Min Ren, and Yu Yang, and Bin Wan, and Liang-Hong Guo, and De Chen, and Yong Fan
February 2021, Environmental pollution (Barking, Essex : 1987),
Copied contents to your clipboard!