Deep Neural Networks for Modeling Visual Perceptual Learning. 2018

Li K Wenliang, and Aaron R Seitz
Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom and kevinli@gatsby.ucl.ac.uk.

Understanding visual perceptual learning (VPL) has become increasingly more challenging as new phenomena are discovered with novel stimuli and training paradigms. Although existing models aid our knowledge of critical aspects of VPL, the connections shown by these models between behavioral learning and plasticity across different brain areas are typically superficial. Most models explain VPL as readout from simple perceptual representations to decision areas and are not easily adaptable to explain new findings. Here, we show that a well -known instance of deep neural network (DNN), whereas not designed specifically for VPL, provides a computational model of VPL with enough complexity to be studied at many levels of analyses. After learning a Gabor orientation discrimination task, the DNN model reproduced key behavioral results, including increasing specificity with higher task precision, and also suggested that learning precise discriminations could transfer asymmetrically to coarse discriminations when the stimulus conditions varied. Consistent with the behavioral findings, the distribution of plasticity moved toward lower layers when task precision increased and this distribution was also modulated by tasks with different stimulus types. Furthermore, learning in the network units demonstrated close resemblance to extant electrophysiological recordings in monkey visual areas. Altogether, the DNN fulfilled predictions of existing theories regarding specificity and plasticity and reproduced findings of tuning changes in neurons of the primate visual areas. Although the comparisons were mostly qualitative, the DNN provides a new method of studying VPL, can serve as a test bed for theories, and assists in generating predictions for physiological investigations.SIGNIFICANCE STATEMENT Visual perceptual learning (VPL) has been found to cause changes at multiple stages of the visual hierarchy. We found that training a deep neural network (DNN) on an orientation discrimination task produced behavioral and physiological patterns similar to those found in human and monkey experiments. Unlike existing VPL models, the DNN was pre-trained on natural images to reach high performance in object recognition, but was not designed specifically for VPL; however, it fulfilled predictions of existing theories regarding specificity and plasticity and reproduced findings of tuning changes in neurons of the primate visual areas. When used with care, this unbiased and deep-hierarchical model can provide new ways of studying VPL from behavior to physiology.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077321 Deep Learning Supervised or unsupervised machine learning methods that use multiple layers of data representations generated by nonlinear transformations, instead of individual task-specific ALGORITHMS, to build and train neural network models. Hierarchical Learning,Learning, Deep,Learning, Hierarchical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

Li K Wenliang, and Aaron R Seitz
October 2004, Nature,
Li K Wenliang, and Aaron R Seitz
July 2022, Sensors (Basel, Switzerland),
Li K Wenliang, and Aaron R Seitz
January 2016, Frontiers in computational neuroscience,
Li K Wenliang, and Aaron R Seitz
November 2021, IEEE transactions on pattern analysis and machine intelligence,
Li K Wenliang, and Aaron R Seitz
November 2020, IEEE transactions on visualization and computer graphics,
Li K Wenliang, and Aaron R Seitz
January 2020, Scientific reports,
Li K Wenliang, and Aaron R Seitz
March 2019, Neural networks : the official journal of the International Neural Network Society,
Li K Wenliang, and Aaron R Seitz
February 2024, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
Li K Wenliang, and Aaron R Seitz
January 2022, Neural processing letters,
Copied contents to your clipboard!