Relationship between hemispheric cerebral blood flow, central conduction time, and clinical grade in aneurysmal subarachnoid hemorrhage. 1985

J Rosenstein, and A D Wang, and L Symon, and M Suzuki

The relationship between central conduction time (CCT) and hemispheric cerebral blood flow (CBF) has been examined in 20 patients presenting with subarachnoid hemorrhage. A total of 63 combined CCT/CBF recordings were performed at various times throughout the hospital course of these patients, and the findings were correlated to clinical status. The initial-slope index of the CBF (CBF isi) was found to correlate well with clinical grade, and a gradation in flow was noted between the different neurological grades. Patients in Grades I and II (Hunt and Hess classification) had the highest flows (mean CBF isi = 47.2 +/- 8.1); Grade III patients had intermediate flows (mean CBF isi = 39.6 +/- 7.8); and Grade IV patients had the lowest flows (mean CBF isi = 32.0 +/- 6.4). While CCT tended to become increasingly prolonged with worsening grade, a significant difference could not be demonstrated between Grade I, II, and III patients. Only when Grade IV status was reached was the CCT significantly prolonged. When CBF isi and CCT were examined, a threshold relationship was noted between CBF isi and CCT prolongation. At flow values above 30, little change was noted in CCT, and CCT remained in the normal range. However, at flow values below 30, CCT became increasingly prolonged as blood flow diminished. The degree of CCT prolongation appeared to be directly proportional to the degree of blood flow diminution at flows below threshold.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002532 Intracranial Aneurysm Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841) Aneurysm, Cerebral,Aneurysm, Intracranial,Basilar Artery Aneurysm,Berry Aneurysm,Brain Aneurysm,Cerebral Aneurysm,Giant Intracranial Aneurysm,Mycotic Aneurysm, Intracranial,Aneurysm, Anterior Cerebral Artery,Aneurysm, Anterior Communicating Artery,Aneurysm, Basilar Artery,Aneurysm, Middle Cerebral Artery,Aneurysm, Posterior Cerebral Artery,Aneurysm, Posterior Communicating Artery,Anterior Cerebral Artery Aneurysm,Anterior Communicating Artery Aneurysm,Middle Cerebral Artery Aneurysm,Posterior Cerebral Artery Aneurysm,Posterior Communicating Artery Aneurysm,Aneurysm, Berry,Aneurysm, Brain,Aneurysm, Giant Intracranial,Aneurysm, Intracranial Mycotic,Aneurysms, Basilar Artery,Aneurysms, Berry,Aneurysms, Brain,Aneurysms, Cerebral,Aneurysms, Giant Intracranial,Aneurysms, Intracranial,Aneurysms, Intracranial Mycotic,Artery Aneurysm, Basilar,Artery Aneurysms, Basilar,Basilar Artery Aneurysms,Berry Aneurysms,Brain Aneurysms,Cerebral Aneurysms,Giant Intracranial Aneurysms,Intracranial Aneurysm, Giant,Intracranial Aneurysms,Intracranial Aneurysms, Giant,Intracranial Mycotic Aneurysm,Intracranial Mycotic Aneurysms,Mycotic Aneurysms, Intracranial
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Rosenstein, and A D Wang, and L Symon, and M Suzuki
March 2004, Journal of neurosurgery,
J Rosenstein, and A D Wang, and L Symon, and M Suzuki
January 2015, Acta neurochirurgica. Supplement,
J Rosenstein, and A D Wang, and L Symon, and M Suzuki
December 2009, Neuroradiology,
J Rosenstein, and A D Wang, and L Symon, and M Suzuki
January 2004, Neurocritical care,
J Rosenstein, and A D Wang, and L Symon, and M Suzuki
January 2010, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Copied contents to your clipboard!