Identification and cyclic AMP-induced modification of the cyclic AMP receptor in Dictyostelium discoideum. 1985

P Klein, and A Theibert, and D Fontana, and P N Devreotes

We have recently identified a cell surface cAMP-binding protein by specific photoaffinity labeling of intact Dictyostelium discoideum cells with 8-N3-[32P] cAMP. The major photolabeled protein appears as a doublet (Mr = 40,000-43,000) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. In this study, the doublet is shown to have the characteristics of the cAMP receptor responsible for chemotaxis and cAMP signaling. Both specific photoaffinity labeling of the doublet and binding of 8-N3-[32P]cAMP are saturable (KD = 0.3 microM), the levels of both peak at 5 h, and both are inhibited by cAMP and several cAMP analogs in the same order of potency and with K1 values similar to those measured for inhibition of [3H]cAMP binding. When cAMP-binding activity was partially purified (40-fold) and then photoaffinity labeled, the same bands (Mr = 40,000-43,000) were observed. The relative intensities of the upper and lower bands of the doublet alternated at the same frequency as the spontaneous oscillations in cAMP synthesis. When oscillations were suppressed, the lower band of the doublet predominated. Following addition of cAMP, the relative intensity gradually shifted to the upper band. When cAMP was removed, there was a gradual restoration of the lower band form. We propose that the lower band form of the receptor activates chemotaxis and cAMP signaling and that the upper band form does not. This reversible receptor modification may then be the mechanism of adaptation, the process by which the physiological responses cease to be stimulated by persistent cAMP. Several developmentally regulated genes in D. discoideum have been reported to be induced or suppressed by pulses of cAMP (adaptive regulation) and others by continuous cAMP (nonadaptive regulation). These observations may be explained by the receptor modification reported here if the two forms of the receptor, which bind cAMP with the same affinity, independently influence gene expression.

UI MeSH Term Description Entries
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

P Klein, and A Theibert, and D Fontana, and P N Devreotes
June 1975, Nature,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
April 1990, Journal of cell science,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
March 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
August 1986, The Journal of biological chemistry,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
January 1985, The EMBO journal,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
January 1987, Molecular and cellular biology,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
May 1998, Biophysical chemistry,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
April 1987, Cell differentiation,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
December 1969, Nature,
P Klein, and A Theibert, and D Fontana, and P N Devreotes
July 1980, Cell biology international reports,
Copied contents to your clipboard!