Involvement of epinephrine in the presynaptic beta adrenoceptor mechanism of norepinephrine release from rat hypothalamic slices. 1985

H Ueda, and Y Goshima, and T Kubo, and Y Misu

Using high-performance liquid chromatography with electro-chemical detector, we measured field impulse (5 or 2 Hz)- and high K+ (20 mM)-evoked release of endogenous norepinephrine from rat hypothalamic slices. Release by impulses at 5 Hz was tetrodotoxin-sensitive and both types of release were Ca++-dependent. Isoproterenol (10(-10) to 10(-8) M) dose-dependently facilitated impulse-evoked release and l-propranolol (10(-8) M) shifted dose-effect curve of isoproterenol to the right. Atenolol (10(-8) to 10(-6) M) or butoxamine (10(-9) to 10(-8) M), beta-1 and beta-2-antagonist, respectively, dose-dependently antagonized the facilitatory effect of isoproterenol (10(-8) M). Tazolol (10(-8) to 10(-7) M), beta-1-agonist, and salbutamol (10(-10) to 10(-8) M), beta-2-agonist, dose-dependently increased impulse-evoked release. Epinephrine (10(-9) M) also facilitated impulse-evoked release and the action was antagonized by l-propranolol (10(-8) M). Isoproterenol (10(-8) M) also facilitated high K+-evoked release in the presence of tetrodotoxin (3 X 10(-7) M) to exclude possible involvement of axonal conduction or neuronal loops. This facilitatory effect was antagonized by l-propranolol (10(-8) M). l-Propranolol (3 X 10(-7) M) alone decreased release by impulses at 2 Hz, but the d-isomer produced no effect. When rats were pretreated with 2,3-dichloro-alpha-methylbenzylamine, an inhibitor of phenylethanolamine N-methyltransferase, the enzyme catalyzing the formation of epinephrine from norepinephrine, 80 mg/kg i.p. before decapitation, the l-propranolol-induced decrease was abolished completely.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine

Related Publications

H Ueda, and Y Goshima, and T Kubo, and Y Misu
November 1995, Research communications in molecular pathology and pharmacology,
H Ueda, and Y Goshima, and T Kubo, and Y Misu
January 1983, Hypertension (Dallas, Tex. : 1979),
H Ueda, and Y Goshima, and T Kubo, and Y Misu
January 1991, The Journal of pharmacology and experimental therapeutics,
H Ueda, and Y Goshima, and T Kubo, and Y Misu
October 1987, Brain research,
H Ueda, and Y Goshima, and T Kubo, and Y Misu
October 1985, The Journal of pharmacology and experimental therapeutics,
H Ueda, and Y Goshima, and T Kubo, and Y Misu
November 1996, Brain research,
H Ueda, and Y Goshima, and T Kubo, and Y Misu
July 1993, The American journal of physiology,
H Ueda, and Y Goshima, and T Kubo, and Y Misu
November 1992, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!