Modulation of muscle phosphofructokinase at physiological concentration of enzyme. 1985

L Boscá, and J J Aragón, and A Sols

Two approaches have been used to study the allosteric modulation of phosphofructokinase at physiological concentration of enzyme; a "slow motion" approach based on the use of a very low Mg2+/ATP ratio to conveniently lower Vmax, and the addition of polyethylene glycol as a "crowding" agent to favor aggregation of diluted enzyme. At 0.6 mg/ml muscle phosphofructokinase exhibited a drastic decrease in the ATP inhibition and the concomitant increase in the apparent affinity for fructose-6-P, as compared to a 100-fold diluted enzyme. Similar results were obtained with diluted enzyme in the presence of 10% polyethylene glycol (Mr = 6000). Results with these two approaches in vitro were essentially similar to those previously observed in situ (Aragón, J. J., Felíu, F. E., Frenkel, R., and Sols, A. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 6324-6328), indicating that the enzyme is strongly dependent on homologous interactions at physiological concentrations. With polyethylene glycol it was observed that within the physiological range of concentration of substrates and the other positive effectors, fructose-2,6-P2 still activates the liver phosphofructokinase although it no longer significantly affects the muscle isozyme. In the presence of polyethylene glycol, muscle phosphofructokinase can approach its maximal rate even in the presence of physiologically high concentrations of ATP. Three minor activities of muscle phosphofructokinase have been studied at high enzyme concentration: the hydrolysis of MgATP (ATPase) and fructose-1,6-P2 (FBPase), produced in the absence of the other substrate, and the reverse reaction from MgADP and fructose-1,6-P2. The kinetic study of these activities has allowed a new insight into the mechanisms involved in the modulation of phosphofructokinase activity. The binding of (Mg)ATP at its regulatory site reduces the ability of the enzyme to cleave the bond of the terminal phosphate of MgATP at the substrate site. The positive effectors (Pi, cAMP, NH+4, fructose-1,6-P2, and fructose-2,6-P2) decrease the inhibitory effect of MgATP. Citrate and fructose-2,6-P2 both act as mechanistically "secondary" effectors in the sense that citrate does not inhibit and fructose-2,6-P2 does not activate the FBPase activity, requiring both the presence of ATP to affect the enzyme activity. In conclusion it appears that the regulatory behavior of mammalian phosphofructokinases is utterly dependent on the fact of their high concentrations in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005635 Fructosediphosphates Diphosphoric acid esters of fructose. The fructose-1,6- diphosphate isomer is most prevalent. It is an important intermediate in the glycolysis process.
D005636 Fructosephosphates
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase

Related Publications

L Boscá, and J J Aragón, and A Sols
March 1990, Biochemical and biophysical research communications,
L Boscá, and J J Aragón, and A Sols
July 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
L Boscá, and J J Aragón, and A Sols
September 1985, Biochemical and biophysical research communications,
L Boscá, and J J Aragón, and A Sols
January 1977, Acta biologica et medica Germanica,
L Boscá, and J J Aragón, and A Sols
May 1995, Journal of applied physiology (Bethesda, Md. : 1985),
L Boscá, and J J Aragón, and A Sols
February 1985, The Biochemical journal,
L Boscá, and J J Aragón, and A Sols
June 1982, Experimental eye research,
L Boscá, and J J Aragón, and A Sols
March 1986, Biochemical and biophysical research communications,
Copied contents to your clipboard!