Ontogenetic development of serotoninergic neurons in the brain of a teleost, the three-spined stickleback. An immunohistochemical analysis. 1985

P Ekström, and L Nyberg, and T van Veen

The ontogenetic development of serotoninergic neurons in the brain of the stickleback was investigated with the indirect immunocytochemical peroxidase-antiperoxidase technique, using a specific antibody to serotonin (5-hydroxytryptamine, 5-HT). Formation of neuronal populations takes place during embryonic development. By 80 h after fertilization, the first 5-HT perikarya have appeared in the ventricular zone of the hypothalamus (nucleus recessus lateralis) and the raphe region. At 108 h the first 5-HT perikarya can be observed in area praetectalis. At 118 h a transient group of 5-HT neurons appears rostral to the nucleus recessus lateralis, and at this same age the first 5-HT perikarya may be visualized in nucleus recessus posterioris. A group of 5-HT neurons appears in the dorsolateral tegmentum at 166 h (one day after hatching, which occurs at 120-144 h after fertilization). Differentiation of the neuronal populations, in terms of migration and formation of subdivisions, starts between 80 h and 94 h, and seems to be completed between 1 and 5 days after hatching. Raphe nuclei form an anterior group comprising nuclei raphe dorsalis, raphe medialis and a ventrolateral group, and a posterior group comprising a nucleus raphe pallidus/obscurus complex, a lateral nucleus reticularis paragigantocellularis and a ventromedial nucleus raphe magnus. The posterior and ventral raphe nuclei, which are well developed at the time of hatching, have not been visualized in the adult stickleback. While formation of 5-HT neuronal systems, as well as their primary efferent pathways, takes place during early ontogenetic development, the establishment of terminal areas and their subsequent differentiation apparently takes place during later ontogenetic stages. Most presumptive target areas are penetrated by 5-HT axons at hatching, although terminal formation does not seem to start until later. A considerable number of 5-HT neuronal groups present in the embryonic and newly hatched stickleback have not been visualized in the adult stickleback. This may be due to selective cell death, changes in transmitter phenotype or maturation of axonal transport processes during development.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

P Ekström, and L Nyberg, and T van Veen
October 2016, Lab animal,
P Ekström, and L Nyberg, and T van Veen
January 2007, Environmental sciences : an international journal of environmental physiology and toxicology,
P Ekström, and L Nyberg, and T van Veen
February 2014, Journal of evolutionary biology,
P Ekström, and L Nyberg, and T van Veen
November 2004, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
P Ekström, and L Nyberg, and T van Veen
January 2019, PloS one,
Copied contents to your clipboard!