The Drosophila ninaE gene encodes an opsin. 1985

J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury

The Drosophila ninaE gene was isolated by a multistep protocol on the basis of its homology to bovine opsin cDNA. The gene encodes the major visual pigment protein (opsin) contained in Drosophila photoreceptor cells R1-R6. The coding sequence is interrupted by four short introns. The positions of three introns are conserved with respect to positions in mammalian opsin genes. The nucleotide sequence has intermittent regions of homology to bovine opsin coding sequences. The deduced amino acid sequence reveals significant homology to vertebrate opsins; there is strong conservation of the retinal binding site and two other regions. The predicted protein secondary structure strikingly resembles that of mammalian opsins. We conclude the Drosophila and vertebrate opsin genes are derived from a common ancestor.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
August 1987, Genetics,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
January 1989, Genetics,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
January 2011, Molecular vision,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
April 1991, Proceedings of the National Academy of Sciences of the United States of America,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
November 1994, Biochemistry,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
February 1987, The EMBO journal,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
March 1986, Cell,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
February 2022, Genes,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
June 1993, Neuron,
J E O'Tousa, and W Baehr, and R L Martin, and J Hirsh, and W L Pak, and M L Applebury
October 1994, Nature,
Copied contents to your clipboard!