A gap at a unique location in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. 1985

J M Ntambi, and P T Englund

Kinetoplast DNA is a network containing thousands of interlocked minicircles. The minicircles replicate as free molecules after release from the network, and their progeny are then reattached (Englund, P. T., (1979) J. Biol. Chem. 254, 4895-4900). In Trypanosoma equiperdum, some of the newly replicated minicircles which have recatenated to the network contain a single gap. This gap is about 10 nucleotides in size and it is in the newly synthesized strand. Based on several criteria (S1 nuclease digestion, denaturing polyacrylamide gel analysis and DNA sequencing), the gap residues at a unique site on the molecule. This site overlaps the sequence GGGGTTGGTGTAA, which is the only common sequence found in all minicircles, from several different species, which have been examined.

UI MeSH Term Description Entries
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014345 Trypanosoma A genus of flagellate protozoans found in the BLOOD and LYMPH of vertebrates and invertebrates, both hosts being required to complete the life cycle. Nannomonas,Trypanosomes,Nannomona,Trypanosome
D015719 Single-Strand Specific DNA and RNA Endonucleases Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA. Single Strand Specific DNA and RNA Endonucleases
D018105 DNA, Kinetoplast DNA of kinetoplasts which are specialized MITOCHONDRIA of trypanosomes and related parasitic protozoa within the order KINETOPLASTIDA. Kinetoplast DNA consists of a complex network of numerous catenated rings of two classes; the first being a large number of small DNA duplex rings, called minicircles, approximately 2000 base pairs in length, and the second being several dozen much larger rings, called maxicircles, approximately 37 kb in length. Kinetoplast DNA,Kinetoplast DNA Maxicircles,Kinetoplast DNA Minicircles,kDNA,kDNA Maxicircles,kDNA Minicircles,DNA Maxicircles, Kinetoplast,DNA Minicircles, Kinetoplast,Maxicircles, Kinetoplast DNA,Maxicircles, kDNA,Minicircles, Kinetoplast DNA,Minicircles, kDNA

Related Publications

J M Ntambi, and P T Englund
September 1979, Biochemical and biophysical research communications,
J M Ntambi, and P T Englund
August 1989, Molecular and cellular biology,
J M Ntambi, and P T Englund
May 1980, Biochimica et biophysica acta,
J M Ntambi, and P T Englund
January 1994, Molecular and biochemical parasitology,
J M Ntambi, and P T Englund
July 1999, Experimental parasitology,
J M Ntambi, and P T Englund
January 1988, Molecular and biochemical parasitology,
J M Ntambi, and P T Englund
June 1981, Proceedings of the National Academy of Sciences of the United States of America,
J M Ntambi, and P T Englund
January 1979, Biochimica et biophysica acta,
J M Ntambi, and P T Englund
February 1992, Molecular and biochemical parasitology,
Copied contents to your clipboard!