Isolation and partial characterization of a human alveolar macrophage-derived neutrophil-activating factor. 1985

J E Pennington, and T H Rossing, and L W Boerth, and T H Lee

Human alveolar macrophages (AM) were obtained from eight normal volunteers using fiberoptic bronchoscopic lavage to explore potential interrelationships among leukocytes in pulmonary defense against infection. AM placed in monolayer tissue cultures released material into culture supernatants with the capacity to enhance the bactericidal capacity of human neutrophils. Neutrophils preexposed to supernatants killed Pseudomonas aeruginosa from 70 to 90% more efficiently than control cells (P less than 0.02). AM culture supernatants contained this material by 4 h of incubation, and in vitro stimulation of AM cultures with heat-killed P. aeruginosa further increased its production. Gel filtration of AM culture supernatants with a G-50 Sephadex column allowed isolation of a 6,000-D neutrophil-activating factor (NAF) that was resistant to heat (56 degrees C, 30 min). The isoelectric point of NAF, as determined by chromatofocusing, was approximately 7.6. Enzyme digestion of NAF specimens, prepared sequentially by gel filtration and chromatofocusing, demonstrated 50-70% loss of activity after incubations with trypsin, chymotrypsin, and neuraminidase. NAF was only minimally chemotactic and eluted from Sephadex G-50 with particles of a different molecular size than those of AM-derived chemotactic factors (i.e., approximately 10,000 D and less than 500 D). Preincubation of neutrophils with NAF resulted in greater release of superoxide anion upon their subsequent stimulation by either bacterial phagocytosis or by phorbol myristate acetate, as compared with control neutrophils stimulated in a like manner. These studies indicate that human AM secrete a heat-stable, low molecular weight basic protein, with the capacity to enhance oxidative microbicidal activity of neutrophils.

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D005260 Female Females

Related Publications

J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
January 1995, Mediators of inflammation,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
September 1980, The Journal of clinical investigation,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
January 1990, Experimental lung research,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
February 1980, The Journal of clinical investigation,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
October 1982, The Journal of clinical investigation,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
February 1980, Journal of immunology (Baltimore, Md. : 1950),
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
January 1977, Annales d'immunologie,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
December 1972, The Journal of experimental medicine,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
April 1980, The American review of respiratory disease,
J E Pennington, and T H Rossing, and L W Boerth, and T H Lee
July 1994, Cancer immunology, immunotherapy : CII,
Copied contents to your clipboard!