Assessment of the accuracy and stability of frameless gamma knife radiosurgery. 2018

Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.

The aim of this study was to assess the accuracy and stability of frameless gamma knife radiosurgery (GKRS). The accuracies of the radiation isocenter and patient couch movement were evaluated by film dosimetry with a half-year cycle. Radiation isocenter assessment with a diode detector and cone-beam computed tomography (CBCT) image accuracy tests were performed daily with a vendor-provided tool for one and a half years after installation. CBCT image quality was examined twice a month with a phantom. The accuracy of image coregistration using CBCT images was studied using magnetic resonance (MR) and computed tomography (CT) images of another phantom. The overall positional accuracy was measured in whole procedure tests using film dosimetry with an anthropomorphic phantom. The positional errors of the radiation isocenter at the center and at an extreme position were both less than 0.1 mm. The three-dimensional deviation of the CBCT coordinate system was stable for one and a half years (mean 0.04 ± 0.02 mm). Image coregistration revealed a difference of 0.2 ± 0.1 mm between CT and CBCT images and a deviation of 0.4 ± 0.2 mm between MR and CBCT images. The whole procedure test of the positional accuracy of the mask-based irradiation revealed an accuracy of 0.5 ± 0.6 mm. The radiation isocenter accuracy, patient couch movement accuracy, and Gamma Knife Icon CBCT accuracy were all approximately 0.1 mm and were stable for one and a half years. The coordinate system assigned to MR images through coregistration was more accurate than the system defined by fiducial markers. Possible patient motion during irradiation should be considered when evaluating the overall accuracy of frameless GKRS.

UI MeSH Term Description Entries
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016634 Radiosurgery A radiological stereotactic technique developed for cutting or destroying tissue by high doses of radiation in place of surgical incisions. It was originally developed for neurosurgery on structures in the brain and its use gradually spread to radiation surgery on extracranial structures as well. The usual rigid needles or probes of stereotactic surgery are replaced with beams of ionizing radiation directed toward a target so as to achieve local tissue destruction. Gamma Knife Radiosurgery,Linear Accelerator Radiosurgery,Stereotactic Body Radiotherapy,Stereotactic Radiosurgery,CyberKnife Radiosurgery,LINAC Radiosurgery,Radiosurgery, Gamma Knife,Radiosurgery, Linear Accelerator,Radiosurgery, Stereotactic,Stereotactic Radiation,Stereotactic Radiation Therapy,CyberKnife Radiosurgeries,Gamma Knife Radiosurgeries,LINAC Radiosurgeries,Linear Accelerator Radiosurgeries,Radiation Therapy, Stereotactic,Radiation, Stereotactic,Radiosurgery, CyberKnife,Radiosurgery, LINAC,Radiotherapy, Stereotactic Body,Stereotactic Body Radiotherapies,Stereotactic Radiation Therapies,Stereotactic Radiations,Stereotactic Radiosurgeries,Therapy, Stereotactic Radiation
D054893 Cone-Beam Computed Tomography Computed tomography modalities which use a cone or pyramid-shaped beam of radiation. CAT Scan, Cone-Beam,Cone-Beam CT,Tomography, Cone-Beam Computed,Tomography, Volume Computed,CT Scan, Cone-Beam,Cone-Beam Computer-Assisted Tomography,Cone-Beam Computerized Tomography,Volume CT,Volume Computed Tomography,Volumetric CT,Volumetric Computed Tomography,CAT Scan, Cone Beam,CAT Scans, Cone-Beam,CT Scan, Cone Beam,CT Scans, Cone-Beam,CT, Cone-Beam,CT, Volume,CT, Volumetric,Computed Tomography, Cone-Beam,Computed Tomography, Volume,Computed Tomography, Volumetric,Computer-Assisted Tomography, Cone-Beam,Computerized Tomography, Cone-Beam,Cone Beam CT,Cone Beam Computed Tomography,Cone Beam Computer Assisted Tomography,Cone Beam Computerized Tomography,Cone-Beam CAT Scan,Cone-Beam CAT Scans,Cone-Beam CT Scan,Cone-Beam CT Scans,Scan, Cone-Beam CAT,Scan, Cone-Beam CT,Scans, Cone-Beam CAT,Scans, Cone-Beam CT,Tomography, Cone Beam Computed,Tomography, Cone-Beam Computer-Assisted,Tomography, Cone-Beam Computerized,Tomography, Volumetric Computed
D061089 Radiotherapy, Image-Guided The use of pre-treatment imaging modalities to position the patient, delineate the target, and align the beam of radiation to achieve optimal accuracy and reduce radiation damage to surrounding non-target tissues. Image-Guided Radiation Therapy,Radiotherapy Target Organ Alignment,Target Organ Alignment, Radiotherapy,Image Guided Radiation Therapy,Image-Guided Radiation Therapies,Image-Guided Radiotherapies,Image-Guided Radiotherapy,Radiation Therapies, Image-Guided,Radiation Therapy, Image-Guided,Radiotherapies, Image-Guided,Radiotherapy, Image Guided,Therapies, Image-Guided Radiation,Therapy, Image-Guided Radiation
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
January 2020, Journal of radiosurgery and SBRT,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
January 2018, PloS one,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
January 2023, Physics and imaging in radiation oncology,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
January 2023, Neurology India,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
February 2021, Clinical & experimental metastasis,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
July 2023, Neurosurgery,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
September 2020, Journal of applied clinical medical physics,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
January 2020, Advances in radiation oncology,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
April 2007, Medical physics,
Hyun-Tai Chung, and Woo-Yoon Park, and Tae Hoon Kim, and Yong Kyun Kim, and Kook Jin Chun
March 2022, Scientific reports,
Copied contents to your clipboard!