Retinoids activate superoxide production by polymorphonuclear leucocytes. 1985

H Hemilä, and M Wikström

Retinol and retinoic acid were effective activators of oxygen consumption by human polymorphonuclear leucocytes (PMN) in micromolar concentrations. In contrast, retinyl acetate was ineffective as an activator. Retinol caused activation only after a lag time, the length of which depended on retinol concentration. Oxygen consumption was due to superoxide production by PMN. Superoxide production was observed as superoxide dismutase-inhibitable cytochrome c reduction. Previously, retinoids have been reported to inhibit PMN activation by phorbol myristate acetate, a tumour promoter. This retinoid-induced inhibition of PMN activation has been suggested to be a mechanism by which retinoids may protect against carcinogenesis in animals. However, the retinoid concentrations at which PMN inhibition was reported were much higher than those found to cause activation in this study. We found that retinoic acid slightly inhibited phorbol myristate acetate-activated superoxide production, but only at concentrations that caused activation. In contrast, activation by formyl-Met-Leu-Phe was effectively inhibited at a retinoic acid concentration that did not cause activation by itself.

UI MeSH Term Description Entries
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000084562 Retinyl Esters A carboxylic ester of retinol formed by condensation of the hydroxy group of retinol with a carboxy group. All-Trans-Retinyl Ester,All-Trans-Retinyl Esters,Retinyl Ester,All Trans Retinyl Ester,All Trans Retinyl Esters,Ester, All-Trans-Retinyl,Ester, Retinyl
D012176 Retinoids A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization. Retinoid
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

H Hemilä, and M Wikström
January 1993, Life sciences,
H Hemilä, and M Wikström
February 1979, European journal of pediatrics,
H Hemilä, and M Wikström
November 1981, The Biochemical journal,
H Hemilä, and M Wikström
April 1994, Clinical science (London, England : 1979),
H Hemilä, and M Wikström
January 1986, Histochemistry,
H Hemilä, and M Wikström
January 1983, Acta microbiologica Polonica,
H Hemilä, and M Wikström
July 1991, Clinica chimica acta; international journal of clinical chemistry,
Copied contents to your clipboard!