Superoxide-dependent lipid peroxidation and vitamin E content of microsomes from hepatomas with different growth rates. 1985

S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti

Lipid peroxidation of microsomal membranes isolated from rat liver, and Morris hepatomas 9618A (slow-growing) and 3924A (fast-growing) was induced by superoxide radicals generated by the action of xanthine oxidase on xanthine. The peroxidation, measured as malondialdehyde and lipid hydroperoxide formation, was optimized with regard to iron concentration and chelation of iron by ADP. In such conditions hepatoma microsomes catalyze lower rates of lipid peroxidation than the normal counterpart. However, while microsomes from hepatoma 3924A show a marked decrease in both the malondialdehyde and hydroperoxide production rates, microsomes from hepatoma 9618A differ moderately from the control, mainly in the long-term production of hydroperoxides. It is also reported here that the 9618A microsomes partially lack cytochrome P-450 (about 40% deficiency), but they have a fatty acid composition similar to that of control. No differences were found in the content of vitamin E between normal and hepatoma 3924A microsomes. Moreover, induction of vitamin E deficiency in hepatoma 3924A microsomes does not influence the rate of either malondialdehyde or lipid hydroperoxide production. On the basis of these results and previous data on the lipid composition of hepatoma 3924A microsomes it is proposed that the high resistance to superoxide-dependent lipid peroxidation of hepatoma 3924A microsomes is related to the low substrate availability rather than the content of membrane antioxidants; and a limitation only in the propagation phase characterizes the hepatoma 9618A microsomal lipid peroxidation and would be due to the partial deficiency of the endogenous propagating agent, cytochrome P-450.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D014810 Vitamin E A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.

Related Publications

S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
January 1960, Nature,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
November 1980, Biochimica et biophysica acta,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
February 1981, Federation proceedings,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
January 1990, Chemico-biological interactions,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
March 1985, The Journal of biological chemistry,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
January 1991, Free radical research communications,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
April 1983, Cell biochemistry and function,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
June 1998, Molecular and cellular biochemistry,
S Borrello, and G Minotti, and G Palombini, and A Grattagliano, and T Galeotti
October 1976, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!