Metabolism of the amino acid beta-pyrazol-1-ylalanine and its parent base pyrazole. 1985

N F Al-Baldawi, and E G Brown

beta-Pyrazol-1-yl-DL-alanine, an uncommon amino acid from plants of the Cucurbitaceae, was fed to mice. Although pyrazole is known to affect the liver enzymes UDP-glucose dehydrogenase, UDP-glucuronyl transferase and UDP-glucuronic acid pyrophosphatase, and also depresses their liver glycogen concentrations, beta-pyrazol-1-ylalanine had no such effects. beta-Pyrazol-1-ylalanine could not be detected in the liver of the experimental animals but was present in the urine. No other change in urinary amino acid content was observed. Studies with [14C]-beta-pyrazol-1-yl-DL-alanine showed the administered amino acid was excreted over a 4-day period, 93% of the compound supplied was recovered. Similar recoveries were obtained with the L-enantiomer from cucumber seed. The metabolic inertness of beta-pyrazol-1-ylalanine was also apparent in experiments involving subcutaneous injection of this compound. Administration of pyrazole confirmed an earlier report of resultant increased activity of liver UDP-glucose dehydrogenase and UDP-glucuronyl transferase, and of the depression of activity of liver UDP-glucuronic acid pyrophosphatase. A concomitant 40% decrease in liver glycogen content was seen. The urine contained a novel metabolite, identified as a peptide conjugate of a pyrazole derivative. Mass spectrometry and p.m.r. spectroscopy indicate that this derivative is 3,4,4-trimethyl-5-pyrazolone. The amino acid constituents are aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, valine and leucine. The urine of mice receiving pyrazole contained less free glycine and alanine than controls. From the results, it is concluded that pyrazole is not a catabolite of dietary beta-pyrazol-1-ylalanine but to the contrary, the amino acid is essentially excreted unchanged. Formation of 3,4,4-trimethyl-5-pyrazolone from pyrazole would imply C-methylation, a process that has not been previously observed in a mammalian detoxication context.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D011755 Pyrophosphatases A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-. Pyrophosphatase
D002854 Chromatography, Paper An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase). Paper Chromatography,Chromatographies, Paper,Paper Chromatographies
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004590 Electrophoresis, Paper Electrophoresis in which paper is used as the diffusion medium. This technique is confined almost entirely to separations of small molecules such as amino acids, peptides, and nucleotides, and relatively high voltages are nearly always used. Paper Electrophoresis
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

N F Al-Baldawi, and E G Brown
December 1960, The Biochemical journal,
N F Al-Baldawi, and E G Brown
December 1960, The Biochemical journal,
N F Al-Baldawi, and E G Brown
January 1950, Bulletin de la Societe de chimie biologique,
N F Al-Baldawi, and E G Brown
June 2008, Acta crystallographica. Section E, Structure reports online,
N F Al-Baldawi, and E G Brown
November 2008, Acta crystallographica. Section E, Structure reports online,
N F Al-Baldawi, and E G Brown
January 1973, Major problems in clinical pediatrics,
N F Al-Baldawi, and E G Brown
December 2006, Journal of chromatography. A,
N F Al-Baldawi, and E G Brown
August 2009, Acta crystallographica. Section E, Structure reports online,
N F Al-Baldawi, and E G Brown
January 2020, Current opinion in clinical nutrition and metabolic care,
Copied contents to your clipboard!