Complete nucleotide sequence of the murine gamma 3 switch region and analysis of switch recombination sites in two gamma 3-expressing hybridomas. 1985

P Szurek, and J Petrini, and W Dunnick

The heavy chain isotype switch is mediated by a DNA rearrangement between a donor switch region (usually mu) and a recipient switch region (gamma, epsilon, or alpha). Switch regions lie upstream of the appropriate heavy chain constant region gene and are composed of simple sequences repeated in tandem. It is not known to what extent the tandemly repeated sequences are important to the heavy chain switch recombination, and to what extent other features of switch region sequences might contribute to the switch process. We studied switches to the gamma 3 isotype by sequencing the entire gamma 3 switch region. This switch region is composed of forty-four 49 base pair units repeated in tandem. These repeated units share modest homology with the mu switch region repeated elements. Evolution of the gamma 3 switch region seems to involve insertions and deletions of the 49mer elements. We also molecularly cloned rearranged switch regions from two gamma 3-expressing hybridomas and determined the DNA sequences at the mu-gamma 3 recombination sites. We located these switch recombination sites within the germ-line gamma 3 switch region, as well as switch recombination sites from two myelomas. All four sites are found in the 5' one-third of the gamma 3 switch region. We discuss some additional trends in the sequence data near these four recombination sites.

UI MeSH Term Description Entries
D007142 Immunoglobulin gamma-Chains Heavy chains of IMMUNOGLOBULIN G having a molecular weight of approximately 51 kDa. They contain about 450 amino acid residues arranged in four domains and an oligosaccharide component covalently bound to the Fc fragment constant region. The gamma heavy chain subclasses (for example, gamma 1, gamma 2a, and gamma 2b) of the IMMUNOGLOBULIN G isotype subclasses (IgG1, IgG2A, and IgG2B) resemble each other more closely than the heavy chains of the other IMMUNOGLOBULIN ISOTYPES. Immunoglobulins, gamma-Chain,Immunoglobulin gamma-Chain,gamma Immunoglobulin Heavy Chain,gamma Immunoglobulin Heavy Chains,gamma-1-Immunoglobulin Heavy Chain,gamma-2a-Immunoglobulin Heavy Chain,gamma-2b-Immunoglobulin Heavy Chain,gamma-Chain Immunoglobulins,Heavy Chain, gamma-1-Immunoglobulin,Heavy Chain, gamma-2a-Immunoglobulin,Heavy Chain, gamma-2b-Immunoglobulin,Immunoglobulin gamma Chain,Immunoglobulin gamma Chains,Immunoglobulins, gamma Chain,gamma 1 Immunoglobulin Heavy Chain,gamma 2a Immunoglobulin Heavy Chain,gamma 2b Immunoglobulin Heavy Chain,gamma Chain Immunoglobulins,gamma-Chain, Immunoglobulin,gamma-Chains, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Szurek, and J Petrini, and W Dunnick
May 1988, Journal of immunology (Baltimore, Md. : 1950),
P Szurek, and J Petrini, and W Dunnick
July 1987, Journal of immunology (Baltimore, Md. : 1950),
P Szurek, and J Petrini, and W Dunnick
February 1993, Nucleic acids research,
P Szurek, and J Petrini, and W Dunnick
January 1992, Current topics in microbiology and immunology,
P Szurek, and J Petrini, and W Dunnick
August 1989, Nucleic acids research,
P Szurek, and J Petrini, and W Dunnick
June 1982, Proceedings of the National Academy of Sciences of the United States of America,
P Szurek, and J Petrini, and W Dunnick
February 1989, The Journal of cell biology,
Copied contents to your clipboard!