Evaluating Macrophages in Immunotoxicity Testing. 2018

Jennifer Franko, and Jamie L McCall, and John B Barnett
Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.

Macrophages are a heterogeneous group of cells that have a multitude of functions depending on their differentiation state. While classically known for their phagocytic and antigen presentation abilities, it is now evident that these cells fulfill homeostatic functions beyond the elimination of invading pathogens. In addition, macrophages have also been implicated in the downregulation of inflammatory responses following pathogen removal, tissue remodeling, repair, and angiogenesis. Alterations in macrophage differentiation and/or activity due to xenobiotic exposure can have grave consequences on organismal homeostasis, potentially contributing to disease due to immunosuppression or chronic inflammatory responses, depending upon the pathways affected. In this chapter, we provide an overview of the macrophages subtypes, their origin and a general discussion of several different assays used to assess their functional status.

UI MeSH Term Description Entries
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2010, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2010, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2018, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
April 2006, Expert opinion on drug metabolism & toxicology,
Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2010, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2010, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2010, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
January 2018, Methods in molecular biology (Clifton, N.J.),
Jennifer Franko, and Jamie L McCall, and John B Barnett
February 2020, Environmental toxicology,
Jennifer Franko, and Jamie L McCall, and John B Barnett
February 2017, Chemosphere,
Copied contents to your clipboard!