Aerosol mixing state matters for particles deposition in human respiratory system. 2018

Joseph Ching, and Mizuo Kajino
Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan. jching@mri-jma.go.jp.

Aerosol particles emitted from various human activities deteriorate air quality and are suggested to increase public health risk. Numerous studies have emphasized the relationship between the mass and/or number concentration of aerosols (or commonly known as particulate matter (PM)) in the atmosphere and the incidence of respiratory and cardiovascular diseases, while very few have examined the deposition efficiency of inhaled particles in the respiratory tract. We present the first examination of particles deposition based on, detailed simulation of aerosol physico-chemical properties by a recently developed particle-resolved aerosol model and the mixing state dependent hygrosocpic growth and deposition computed at particle-level by deposition model. Furthermore, we elucidate the impact of mixing state on deposition efficiency by using a recently introduced aerosol mixing state index. We find that without considering mixing-state-dependent hygroscopic growth of particles leads to overestimation of deposition efficiency; whereas considering an average mixing state leads to underestimation of 5% to 20% of soot particle deposition efficiency in human alveoli. We conclude that aerosol mixing state, which evolves during the interaction between atmospheric chemistry and meteorology, is important for the comprehensive evaluation of air quality and its implication to public health requires further investigation.

UI MeSH Term Description Entries
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D004784 Environmental Monitoring The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment. Monitoring, Environmental,Environmental Surveillance,Surveillance, Environmental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000336 Aerosols Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents. Aerosol
D000388 Air The mixture of gases present in the earth's atmosphere consisting of oxygen, nitrogen, carbon dioxide, and small amounts of other gases.
D000393 Air Pollutants Any substance in the air which could, if present in high enough concentration, harm humans, animals, vegetation or materials. Substances include GASES; PARTICULATE MATTER; and volatile ORGANIC CHEMICALS. Air Pollutant,Air Pollutants, Environmental,Environmental Air Pollutants,Environmental Pollutants, Air,Air Environmental Pollutants,Pollutant, Air,Pollutants, Air,Pollutants, Air Environmental,Pollutants, Environmental Air
D000397 Air Pollution The presence of contaminants or pollutant substances in the air (AIR POLLUTANTS) that interfere with human health or welfare, or produce other harmful environmental effects. The substances may include GASES; PARTICULATE MATTER; or volatile ORGANIC CHEMICALS. Air Quality,Air Pollutions,Pollution, Air
D017155 Wettability The quality or state of being wettable or the degree to which something can be wet. This is also the ability of any solid surface to be wetted when in contact with a liquid whose surface tension is reduced so that the liquid spreads over the surface of the solid. Hygroscopicity,Wetability,Hygroscopicities,Wetabilities,Wettabilities
D052638 Particulate Matter Particles of any solid substance, generally under 30 microns in size, often noted as PM30. There is special concern with PM1 which can get down to PULMONARY ALVEOLI and induce MACROPHAGE ACTIVATION and PHAGOCYTOSIS leading to FOREIGN BODY REACTION and LUNG DISEASES. Ultrafine Fiber,Ultrafine Fibers,Ultrafine Particle,Ultrafine Particles,Ultrafine Particulate Matter,Air Pollutants, Particulate,Airborne Particulate Matter,Ambient Particulate Matter,Fiber, Ultrafine,Particle, Ultrafine,Particles, Ultrafine,Particulate Air Pollutants,Particulate Matter, Airborne,Particulate Matter, Ambient,Particulate Matter, Ultrafine

Related Publications

Joseph Ching, and Mizuo Kajino
August 2008, Inhalation toxicology,
Joseph Ching, and Mizuo Kajino
January 2000, International journal of occupational safety and ergonomics : JOSE,
Joseph Ching, and Mizuo Kajino
May 1981, American Industrial Hygiene Association journal,
Joseph Ching, and Mizuo Kajino
September 1975, Inhaled particles,
Joseph Ching, and Mizuo Kajino
June 1980, American Industrial Hygiene Association journal,
Joseph Ching, and Mizuo Kajino
August 1949, Journal of economic entomology,
Joseph Ching, and Mizuo Kajino
January 1980, Annales de l'anesthesiologie francaise,
Copied contents to your clipboard!