Measurement of myocardial infarction fraction using single photon emission computed tomography. 1985

C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson

Although infarct size correlates generally with prognosis after acute myocardial infarction, an absolute measure of infarct size may have differing prognostic significance depending on absolute left ventricular mass. To test the hypothesis that single photon emission computed tomography can accurately measure myocardial infarct size as a percent of total left ventricular mass ("infarction fraction"), thallium-201 and technetium-99m pyrophosphate tomograms were acquired in 21 dogs 24 to 48 hours after fixed occlusion of the left anterior descending or circumflex coronary artery. Pathologic infarct weight was measured as the myocardial mass that showed no staining with triphenyltetrazolium chloride. Scintigraphic infarct mass by technetium-99m pyrophosphate was calculated from the total number of left ventricular volume elements (voxels) demonstrating technetium-99m pyrophosphate uptake X voxel dimension [( 0.476 cm]3) X specific gravity of myocardium (1.05 g/cm3). Scintigraphic left ventricular mass was calculated in a similar fashion using an overlay of the thallium-201 and technetium-99m pyrophosphate scans. The "infarction fraction" was calculated as: infarction fraction = infarct mass/left ventricular mass. There was good correlation between single photon emission computed tomography and pathologic measurements of infarct mass (technetium-99m pyrophosphate mass = 1.01 X pathologic infarct mass + 0.96; r = 0.98), left ventricular mass (single photon emission computed tomographic left ventricular mass = 0.60 X pathologic left ventricular mass + 37.4; r = 0.86) and "infarction fraction" (single photon emission computed tomographic infarction fraction = 1.09 X pathologic infarction fraction - 1.7; r = 0.94).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013667 Technetium The first artificially produced element and a radioactive fission product of URANIUM. Technetium has the atomic symbol Tc, and atomic number 43. All technetium isotopes are radioactive. Technetium 99m (m Technetium 99m,99m, Technetium
D013793 Thallium A heavy, bluish white metal, atomic number 81, atomic weight [204.382; 204.385], symbol Tl. Thallium-205,Thallium 205
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed

Related Publications

C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
April 1994, American journal of cardiac imaging,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
November 1993, Nihon rinsho. Japanese journal of clinical medicine,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
January 1989, European journal of nuclear medicine,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
September 1986, Journal of cardiography,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
October 1991, Nihon Ika Daigaku zasshi,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
November 1985, The American journal of cardiology,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
April 2003, Nihon rinsho. Japanese journal of clinical medicine,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
September 2019, Current opinion in cardiology,
C L Wolfe, and S E Lewis, and J R Corbett, and R W Parkey, and L M Buja, and J T Willerson
December 1984, Journal of cardiography,
Copied contents to your clipboard!